
Introduction Language Program Transformation Compiler References

A RETROSPECTIVE OF CRYSTAL

ANOTHER “PARALLEL COMPILER" AMBITION FROM THE LATE 80’S

Eva Burrows

BLDL-Talks
Department of Informatics, University of Bergen, Norway

February 16, 2010



Introduction Language Program Transformation Compiler References

WHAT IS CRYSTAL?

I a purely functional language with typed λ -abstraction, higher-order operators
and data structures

I code resembles mathematical notations

I equational theory for program transformations (deriving new programs
equivalent to the old) using a metalanguage

I efficient (parallel) compiler with optimizations (equations)

I all in all: addresses programmability and performance of parallel computations



Introduction Language Program Transformation Compiler References Features Language Elements

CRYSTAL PROGRAMS

I a set of mutually recursive definitions of the form

<identifier> : <type-expression> = <expression>

I with special constructs to express data parallelism and locality
I the compiler:

I classifies the source code communication primitives and their cost on the target
machine

I maps data to distributed memory
I generates parallel code with explicit communication commands



Introduction Language Program Transformation Compiler References Features Language Elements

EXPRESSIONS

I basic data types: integers, booleans, floating points

I composite data types: index domains, data fields

I function application to constants and identifiers

I functions: fn(x) : T{ε[x]}
I environments: ε where {d1,d2, . . . ,dn}

I conditionals:


b1→ e1

. . .
bn→ en


I reduction operators for binary functions: reduce, scan

I a construct to simulate while loops: µ(i) : D{p[i]}, where p[i] is a boolean
predicate



Introduction Language Program Transformation Compiler References Features Language Elements

COMPOSITE DATA TYPES: INDEX DOMAINS

I an index domain D is associated with
I set of elements (indices)
I set of functions from D to D (communication operators) together with communication

costs
I set of predicates

I used to define distributed data structures

I they can be interpreted as locations in space and time over which the parallel
computation is defined

I they can be declared to be of a certain kind (second-order types): universal,
temporal, spatial, processor, memory (aid for the compiler )



Introduction Language Program Transformation Compiler References Features Language Elements

INDEX DOMAINS (CONT.)

I basic index domains:
I interval: interval(m,n)
I hypercube: hcube(n)
I binary tree: tree(r ,S) with root r and nodes from the set S (left or right associative or

balanced)

I domain constructors: product (D×E), disjoint union (D +E), function space
(D→ E)

I data-dependent index domain: defined as the value of a recursively defined
function

I hyper surfaces: define the boundary of domain where functions take no special
value



Introduction Language Program Transformation Compiler References Features Language Elements

EXAMPLE: FRAGMENT FROM THE GAUSS ELIMINTATION SOURCE CODE



Introduction Language Program Transformation Compiler References Features Language Elements

INDEX DOMAIN MORPHISMS

I transform one index domain into an other, with the kinds of the domains
indicating the change of interpretations

I a morphism is a mapping D→ E such that paths are preserved (paths as
defined by the composition of the domains’ communication operators)

I reshape morphisms: morphism with an inverse (isomorphisms)

I refinement morphisms: morphism with no inverse

I affine morphism is a reshape morphism from one product of intervals to an other
(unify loop transformations, to “skew” the original structure):
ex. loop interchange: g = fn(i, j) : D1×D2{(j, i) : D2×D1}

I space-time realizations by morphisms:

g = fn(i) : D{(εs(i),εt(i)) : S[S ]×T [T ]}
I can express inner loops to be executed in parallel

I etc.



Introduction Language Program Transformation Compiler References Features Language Elements

AFFINE DOMAIN MORPHISMS EXAMPLE

I Let D = 0..n−1, E = 0..n−1, and T = 0..2n−1 be domains.
Then, g : D2→ E×T s.t. g = fn(i, j) : D2.(i, i + j) is an affine morphism.
The space-time realization of domain D requires a time product D×T while the
reshaped domain E×T is a space time realization already.



Introduction Language Program Transformation Compiler References Features Language Elements

DATA FIELDS AND DATA FIELD MORPHISMS

I a data field is a function over an index domain into some domain of values:
a : D→ V , in Crystal notation: a : dfield(D,V)

I unify the notion of arrays and functions

I an example of a nested for-loop to compute the elements of a matrix:

a : dfield(D2,V) = fn(i, j) : D

{
i = 0∨ j = 0 → e1

else → a(i−1, j)+a(i, j−1)

}
I index domain morphisms induce data field morphisms:

Given g : D→ E index domain morphism, then
g∗ : (D→ V)→ (E → V) : a→ a◦g−1
will define to new data field. But only works if g is a reshape morphism



Introduction Language Program Transformation Compiler References Features Language Elements

COMMUNICATION FORMS

I they needed the explicit introduction of senders, receivers (the sender does not
know who the receivers are) to keep track of communications and help
optimizations

I in the example: a = fn(i) : D[P]{b(τ1(i))+ c(τ2(i))}
the “request-reply” could be replaced by a single “send” if τ1 or τ2 (or both) had
an inverse

I a communication form is a set of communication actions which are defined over
two index domains D to E as a set of pairs: (s, t)

I the invers of the communication form is the set of pairs (t,s)



Introduction Language Program Transformation Compiler References Features Language Elements

COMPILER DIRECTIVES

The compiler needs to be told about:

I domain morphisms: to run the program with reshaped data fields

I communication forms: to specify inverses that cannot be derived by the compiler

I common index domains: alignment of data fields to be allocated over the

I index precedence: precedence(a,{2,1,3})
I dynamic scheduling of mapping computations to processors. If not specified, it is

static



Introduction Language Program Transformation Compiler References Equations Transformation Strategy

THE EQUATIONAL THEORY OF CRYSTAL

I a minimal set of valid equations/algebraic entities in the language (M = N) with
some inference rules for deriving new equations from old

I equations are expressing distributivity wrt. function composition and function
application over conditional statements.
Ex.:

F ◦{B→ H} = {B→ F ◦H}
{B→ H}◦F = {B ◦F → H ◦F}

...

I inference rules are the usual one for equality, substitution, application, abstraction
and composition.
Ex.:

M = N
fn(x){M}= fn(x){N}

M = N
M[H/K ] = N[H/K ]

. . .

I a definition is a simple equation where the left-hand side is a single variable, and
the right-hand side an expression possibly containing the same variable



Introduction Language Program Transformation Compiler References Equations Transformation Strategy

A NEW PROGRAM FROM THE OLD

I given a : D→ V a data-field, and g : D→ E index domain morphism, then we
want a new program in terms of
a∗ = a◦g−1

I how to do this without repeating the application of a and g−1 in the new program
(since repeating them does not reduce the cost)?

I by a mechanizable strategy based
I on substituting all occurrences of a with a = a∗ ◦g in the defintion of a
I using a combination of unfolding g and g−1 and the identities of the underlying

theory, eliminate all occurrences of g and g−1.
I results in a new program (a more efficient one)

I a metalanguage is provided to define such (or similar) transformations at the
programmer’s convenience



Introduction Language Program Transformation Compiler References Compilation Stages Some Elements of the Compiler

THE STRUCTURE OF THE CRYSTAL COMPILER



Introduction Language Program Transformation Compiler References Compilation Stages Some Elements of the Compiler

DEPENDENCY ANALYSES

I call dependency between data fields (functions). It helps decomposing the
program into phases and determining the control flow of the target program

I communication dependency among the indices of the index domains (wrt to data
fields defined over the same index domain). Provides information for data
accessing patterns and storage information. Based on this the compiler
determines appropriate reshape morphisms and mappings to processors and
time sequences by other morphisms.



Introduction Language Program Transformation Compiler References Compilation Stages Some Elements of the Compiler

INDEX DOMAIN ALIGNMENT

I cross-referenced data fields: find a set of suitable reshape morphisms that map
the index domains of these data fields into a common index domain

I data movements between processors are then reduced (optimization)

I can be automated or defined by the programmer



Introduction Language Program Transformation Compiler References Compilation Stages Some Elements of the Compiler

EXAMPLE: FRAGMENT OF THE TRANSFORMED GAUSS EL. CODE



Introduction Language Program Transformation Compiler References Compilation Stages Some Elements of the Compiler

SYNTHESIS OF PARALLEL CONTROL STRUCTURE

I determining the temporal part and the spatial part of an index domain from a
communication dependency graph

I if the graph is acyclic, it is simple

I if it is cyclic: a sophisticated algorithm finds all the temporal components of the
index domain, and the rest is spatial



Introduction Language Program Transformation Compiler References Compilation Stages Some Elements of the Compiler

INTERMEDIATE PROGRAM

I by now the Crystal program has been transformed into an intermediate “parallel”
program for multiple processors with a global shared memory



Introduction Language Program Transformation Compiler References Compilation Stages Some Elements of the Compiler

DATA LAYOUT AND COMMUNICATION SYNTESIS

I deals with the distribution of data over individual memory on each processor, and

I defines explicit communications for the target program



Introduction Language Program Transformation Compiler References

REFERENCES

I Marina Chen, Young-il Choo, Jingke Li: Crystal: theory and pragmatics of
generating efficient parallel code. In: Parallel functional languages and
compilers, ed. B. Szymanski, ACM, 1991

I Marina Chen, Young-il Choo, Jingke Li: Compiling parallel programs by
optimizing performance. The Journal of Supercomputing, 1988, Kluwer
Academic Publishers, Boston

I J. Allan Yang, Young-il Choo: Metalinguistic Features for Formal
Parallel-Program Transformation. Proceedings of the 1992 International
Conference on Computer Languages, 1992.


	Introduction
	Language
	Features
	Language Elements

	Program Transformation
	Equations
	Transformation Strategy

	Compiler
	Compilation Stages
	Some Elements of the Compiler

	References

