
ParaSail: Designing a safe,
pervasively parallel language

February 2014

www.adacore.com

www.parasail-lang.org 	

Presentation cover
page EU

www.adacore.com	

Tucker Taft
AdaCore Inc

Safe Pervasively Parallel Language 2

Our Goal: Safe, Simple,
Pervasively Parallel Programming

•  Why this goal?
–  Deal with the unstoppable shift to multicore, manycore, GPGPU, and/

or cloud computing.

•  Restated Goal: Make it easier and more natural to write
parallel programs than sequential programs.

•  … and oh by the way, what do we mean by “parallel”
programming as opposed to “concurrent” programming?

–  “concurrent” programming constructs allow programmer to simplify
by using multiple threads to reflect the natural concurrency in the
problem domain – heavier weight constructs OK

–  “parallel” programming constructs allow a programmer to divide and
conquer a problem, using multiple threads to work in parallel on
independent parts of the problem – constructs need to be light
weight both syntactically and at run-time

Safe Pervasively Parallel Language 3

The ParaSail experiment in simplified parallel programming

•  Eliminate global variables
•  Operation can only access or update variable state via its parameters

•  Eliminate parameter aliasing
–  Use “hand-off” semantics

•  Eliminate explicit threads, lock/unlock, signal/wait
–  Concurrent objects synchronized automatically

•  Eliminate run-time exception handling
–  Compile-time checking and propagation of preconditions

•  Eliminate pointers
–  Adopt notion of “optional” objects that can grow and shrink

•  Eliminate global heap with no explicit allocate/free
of storage and no garbage collector
–  Replaced by region-based storage management (local heaps)

–  All objects conceptually live in a local stack frame

Safe Pervasively Parallel Language 4

What ParaSail has left

•  Pervasive parallelism
–  Parallel by default; it is easier to write in parallel than sequentially

–  All ParaSail expressions can be evaluated in parallel
–  In expression like “G(X) + H(Y)”, G(X) and H(Y) can be evaluated in parallel

–  Applies to recursive calls as well (as in Word_Count example)

–  Statement executions can be interleaved if no data dependencies unless
separated by explicit then rather than “;”

–  Loop iterations are unordered and possibly concurrent unless explicit
forward or reverse is specified

–  Programmer can express explicit parallelism easily using “||” as statement
connector, or concurrent on loop statement

–  Compiler will complain if any possible data dependencies

•  Full object-oriented programming model
–  Full class-and-interface-based object-oriented programming

–  All modules are generic, but with fully shared compilation model

–  Convenient region-based automatic storage management

•  Annotations part of the syntax
–  pre- and postconditions

–  class invariants and value predicates

Safe Pervasively Parallel Language 5

ParaSail uses Syntactic Sugar to provide extensibility

•  User-defined indexing
–  Any type with op “indexing” defined

–  Indexing function returns ref to component of parameter

–  Built-in support for extensible structures, optional elements

•  User-defined literals
–  Any type with op “from_univ” defined from:

–  Univ_Integer (42), Univ_Real (3.141592653589793)

–  Univ_String (“Hitchhiker’s Guide”), Univ_Character (‘π’)
–  Univ_Enumeration (#red)

•  User-defined ordering
–  Define single binary op “=?” (pronounced “compare”)

–  Returns #less, #equal, #greater, #unordered

–  Implies “<=“, “<“, “==“, “!=“, “>”, “>=“, “in X..Y”, “not in X..Y”

Safe Pervasively Parallel Language 6

Powerful Parallel Iterators – While loops,
tail recursion, and backtracking considered

sequential

Safe Pervasively Parallel Language 7

How do Iterators Fit into this Picture?

•  Computationally-intensive Programs Typically Build,
Analyze, Search, Summarize, and/or Transform Large
Data Structures or Large Data Spaces

•  Iterators encapsulate the process of walking data
structures or data spaces

•  The biggest speed-up from parallelism is provided by
spreading the processing of a large data structure or
data space across multiple processing units

•  So…high level iterators that are amenable to a safe,
parallel interpretation can be critical to capitalizing on
distributed and/or multicore hardware.

Safe Pervasively Parallel Language 8

Simple Iterator and Sequential Equivalents

for I in 1..N loop!
 P(I)!
end loop!
!
I := 1; while I <= N loop!
 P(I)!
 I += 1 // compute next value of I!
end loop!
!
let LP = lambda (I)!
 if I <= N then!
 P(I); LP(I+1) // tail recursion!
 end if!
in LP(1)!

Safe Pervasively Parallel Language 9

Linked-list Iterator with Sequential Equivalents

for (node *p = first; p; p = p->next) {!
 process(p)!
}!
!
node *p = first; while(p) {!
 process(p)!
 p = p->next // point to next node!
}!
!
let lp = lambda (node *p) {!
 if (p) {!

! process(p)!
 lp(p->next) // tail recursion!
 }!
} in lp(first)!

Safe Pervasively Parallel Language 10

The Trouble with While loops and Tail recursion

+  While loop – pros:
–  Universal sequential loop construct; semantics defined simply

-  While loop – cons:

–  Necessarily updates a global to advance through iteration

–  Generally doesn’t update global until after finishing processing
current iteration

+  Tail recursion – pros:

–  No need for global variables – each loop iteration carries its own
copy of loop variable(s)

–  Can generalize to walking more complex data structure such as a
tree by recursing on multiple subtrees

-  Tail recursion – cons:

–  Next iteration value not specified until making (tail) recursive call

–  Each loop necessarily becomes a separate function

Safe Pervasively Parallel Language 11

Combine “pros” of Tail Recursion with (parallel) “for” loop

•  Parallelism requires each iteration to carry its own copy
of loop variable(s), like tail recursion

–  For-loop variable treated as local constant of each loop iteration

•  For loop syntax allows next iteration value to be
specified before beginning current iteration

–  rather than at tail-recursion point or end of loop body

–  multiple iterations can be initiated in parallel

•  Explicit “continue” statement may be used to handle
more complex iteration requirements

–  condition can determine loop-variable values for next iteration(s)

•  Explicit “parallel” statement connector allows
“continue” statement to be executed in parallel with
current iteration

–  rather than after the current iteration is complete

•  Explicit “exit” or “return” allows easy premature exit

Safe Pervasively Parallel Language 12

Walking a tree structure with explicit “continue” statements

for P => Root while P not null loop!
 case P.Kind of!
 [#binary] =>!
 continue loop with P.Left!
 || continue loop with P.Right!
 || Process_Binary (P.Data)!
 [#unary] =>!
 continue loop with P.Operand!
 || Process_Unary (P.Data)!
 [#leaf] =>!
 Process_Leaf (P)!
 end case !
end loop!

Safe Pervasively Parallel Language 13

Continue statement creates a new iteration –
loop is effectively a “bag” of iterations (like a work list)

•  Each continue statement in this kind of explicit “value”
iterator starts another iteration

–  Iteration is added to “bag” of iterations associated with loop

–  Completes current thread of control

•  Can actually “continue” an outer loop
–  Starts a new iteration of the enclosing loop – i.e. adds a new

iteration to “bag” of outer loop – like a work-list

–  Inner loop keeps executing until all of the iterations already in its
“bag” (work-list) are complete

 Outer_Loop
 for Board : Chess_Board_State := No_Columns() loop // N-Queens
 for R in 1 .. N concurrent loop
 if Can_Add_Queen(Board, R) then
 if Num_Columns(Board) < N then
 continue loop Outer_Loop with Board => Add_Column(Board, R)
 else
 Solutions |= Add_Column(Board, R)

Safe Pervasively Parallel Language 14

Short-hand when Simple Binary Tree Iteration

for P => Root then P.Left || P.Right!
 while P not null concurrent loop!
 // “concurrent” means next iteration(s) start immed.!
 Process (P.Data)!
end loop!
!
// Iterator in a quantified expression, e.g.!
// “at least one node has a positive count”!
(for some P => Root then P.Left || P.Right!
 while P not null => P.Count > 0)!
!
// Or flatten binary tree using a vector comprehension:!
[for P => Root then P.Left || P.Right!
 while P not null => P.Data]!

Safe Pervasively Parallel Language 15

Generalize combining construct to provide Map/Reduce

•  Expression in <…> gives initial value, and is replaced after each
computation with result

•  Associativity of operation allows parallelism
•  Can be easier to comprehend than foldl, foldr, foldl1, …!
!
// Compute sum of squares of counts!
Sum_Sqrs := !
 (for P => Root then P.Left || P.Right!
 while P not null => <0> + P.Count**2)!
!
// Compute max of counts (Max(null, A) == A)!
Max_Count := !
 (for P => Root then P.Left || P.Right!
 while P not null => Max(<null>, P.Count))!

Safe Pervasively Parallel Language 16

Two kinds of user-defined “container” iterators

•  User-defined “set” iterator
–  for I in <set> loop …

–  “Set” abstraction must provide “Remove_Any” operation, and may
provide “Remove_First” and “Remove_Last” for ordered (forward or
reverse) iteration

–  Remove_... operation returns null when set is empty

–  Copy of set made and then Remove_... destructively empties the set

•  User-defined “map” iterator iterates over index set of map
–  for each [K => V] of <map> loop …

–  “Map” abstraction must provide “Index_Set” and “Indexing”
operations.

–  Index_Set returns set of keys of all (non-null) values in Map

–  Indexing returns ref to Value given Key and ref to Map

–  Short hand “for each V of <map> loop …” uses an anonymous
variable for the Key

Safe Pervasively Parallel Language 17

Examples of “set” and “map” iterators

•  Set iterators:
 for I in 1..10 forward loop …!
 for I in 1 | 3 | 5 | 7 reverse loop …!
 for S in Successors(G, N) concurrent loop …!
!
•  Map iterators:
 for each [N => Node] of G loop … // graph!
 for each [Name => Sym] of Sym_Tab loop …!
 for each Elem of Vec !
 forward loop … // index implicit!
!
•  Compiler automatically generates code to:!

•  Copy set (or call Index_Set); bind result of
Remove_{First,Last,Any} to loop var/key until null!

•  For map, bind V in [K=>V] to “Indexing(map, K)”!

Safe Pervasively Parallel Language 18

Map and Set primitives need not support concurrent access

•  Iterations are created by calling Remove_...
sequentially

–  once for each iteration until it returns null

•  Each iteration carries its own loop-var value(s)

•  If “concurrent” loop, next call on Remove_...

–  is performed before doing body of loop and

–  next iteration can then run in parallel

•  If non-concurrent loop

–  will wait until body completes before creating next iteration.

•  Sequential use of Remove_... even when “concurrent”
–  simplifies creating user-defined iterable abstractions

•  “Continue” for map/set iterators simply skips rest of
body of loop

–  creates next iteration if not already done.

Safe Pervasively Parallel Language 19

Iterators can have filters

•  Filter specified at end of iterator as boolean expr in {…}

•  Only values where filter evaluates #true are included in
iteration

func Qsort(V : Vector<Comparable>) -> Vector<Comparable>
is!
 if |V| <= 1 then!
 return V // The easy case!
 else!
 const Pivot := V[|V|/2]!
 return Qsort([for each E of V {E <= Pivot} => E])!
 | Qsort([for each E of V {E > Pivot} => E])!
 end if!
end func Qsort!

Safe Pervasively Parallel Language 20

Can “continue” outer loop, as in Breadth-First Search of Graph

 var Seen : Array<Atomic<Boolean>, Node_Id> :=!
 [for N in G.All_Nodes() => Atomic(#false)]!
 Outer!
 for Next_Set => Root_Node_Set loop // specify node-set to search!
 for N in Next_Set { not Value(Seen[N]) } concurrent loop!
 // Check each node in node set, in parallel!
 Set(Seen[N], #true) // ”benign” race condition!
 if not Is_Target(G[N]) then!
 // Start new iteration of outer loop with successor set!
 continue loop Outer with Next_Set => G[N].Succs!
 else!
 // Found a node that satisfies Is_Target!
 // This "return" will cancel other concurrent threads!
 return N!
 end if!
 end loop!
 end loop Outer!
 // No node found that satisfies Is_Target(…)!
 return null!

Safe Pervasively Parallel Language 21

Synchronization in ParaSail via Concurrent Objects

•  No aliasing, and no concurrent updates allowed when
using “normal” ParaSail (sequential) objects

•  What to do if multiple writers, or concurrent reading
and writing is desired?

–  Can slice large container – restrict access to subset of indices

–  Can create a concurrent object
!

concurrent interface Box<Element is Assignable<>> is!

 func Create() -> Box; // Creates an empty box!

 func Put(locked var B : Box; E : Element);!

 func Get(queued var B : Box) -> Element; // May wait!

 func Get_Now(locked B : Box) -> optional Element;!

end interface Box;!

!

type Item_Box is Box<Item>;!

var My_Box : Item_Box := Create();!

Safe Pervasively Parallel Language 22

Synchronizing ParaSail Parallelism

concurrent class Box <Element is Assignable<>> is!
 var Content : optional Element; // starts out null!
 exports!
 func Create() -> Box is // Creates an empty box!
 return (Content => null);!
 end func Create;!
!
 func Put(locked var B : Box; E : Element) is!
 B.Content := E;!
 end func Put;!
!
 func Get(queued var B : Box) -> Element is // May wait!
 queued until B.Content not null then!
 const Result := B.Content;!
 B.Content := null;!
 return Result;!
 end func Get;!
!
 func Get_Now(locked B : Box) -> optional Element is!
 return B.Content;!
 end func Get_Now;!
end class Box;!

Safe Pervasively Parallel Language 23

ParaSail Virtual Machine

•  ParaSail Virtual Machine (PSVM) designed for prototype
implementations of ParaSail.

•  PSVM designed to support “pico” threading with parallel
block, parallel call, and parallel wait instructions.

•  Heavier-weight “server” threads serve a queue of light-
weight pico-threads, each of which represents a sequence of
PSVM instructions (parallel block) or a single parallel “call”
–  Similar to Intel’s Cilk (and TBB) run-time model with work stealing.

•  While waiting to be served, a pico-thread needs only a
handful of words of memory.

•  A single ParaSail program can easily involve 1000’s of pico
threads.

•  PSVM instrumented to show degree of parallelism achieved

Safe Pervasively Parallel Language 24

Example ParaSail Virtual Machine Statistics

Command to execute: stats

Region Statistics:

 New allocations by owner: 7326 = 78%

 Re-allocations by owner: 849 = 9%

 Total allocations by owner: 8175 = 87%

 New allocations by non-owner: 851 = 9%

 Re-allocations by non-owner: 348 = 3%

 Total allocations by non-owner: 1199 = 12%

 Total allocations: 9374

Threading Statistics:
 Num_Initial_Thread_Servers : 3 + 1

 Num_Dynamically_Allocated_Thread_Servers : 0

 Max_Waiting_Threads (on some server's queue): 25

 Average waiting threads: 12.89

 Max_Active (threads): 4

 Average active threads: 3.76

 Max_Active_Masters : 32

 Max_Subthreads_Per_Master : 16

 Max_Waiting_For_Subthreads : 29

 Num_Thread_Steals : 210 out of 1097 total thread
initiations = 19%

Safe Pervasively Parallel Language 25

Supporting Formal Methods in the Language

Compile-Time Exception Handling

Safe Pervasively Parallel Language 26

Why and How to Formalize?

•  Assertions help catch bugs sooner rather than later.

•  Parallelism makes bugs much more expensive to find and
fix.

⇒  Integrate assertions (annotations) into the syntax
everywhere, as pre/postconditions, invariants, etc.

⇒  Compiler disallows potential race-conditions.

⇒  Compiler checks assertions, complains if it can’t
prove the assertions.

⇒  Substituting compile-time checking for run-time checking
implies better performance, and allows problematic code to
be identified earlier

Safe Pervasively Parallel Language 27

Annotations in ParaSail

•  Preconditions, Postconditions, Constraints, etc. all
use Hoare-like syntax, such as “{ X != 0 }”:
–  func Pop(var S : Stack) {Count(S) > 0} !
 -> Elem_Type {Count(S') == Count(S) – 1};

•  All assertions are checked at compile-time
–  Preconditions can be used to help make assertions

provable
–  Compile-time propagation to callers via preconditions
=> Compile-time exception handling

•  Location of assertion determines whether is a:
–  precondition (before “->”)
–  postcondition (after “->”)
–  assertion (between statements)
–  constraint (in type definition)
–  invariant (at top-level of class definition)

Safe Pervasively Parallel Language 28

Examples of ParaSail Annotations

interface Stack <Component is Assignable<>; Size_Type is Integer<>> is!
 !
 func Max_Stack_Size(S : Stack) -> Size_Type {Max_Stack_Size > 0};!
 !
 func Count(S : Stack) -> Size_Type !
 {Count <= Max_Stack_Size(S)};!
 !
 func Create(Max : Size_Type {Max > 0}) -> Stack !
 {Max_Stack_Size(Create) == Max; Count(Create) == 0};!
 !
 func Is_Empty(S : Stack) -> Boolean!
 {Is_Empty == (Count(S) == 0)};!
 !
 func Is_Full(S : Stack) -> Boolean!
 {Is_Full == (Count(S) == Max_Stack_Size(S))};!
!
 func Push(var S : Stack {not Is_Full(S)}; X : Component)!
 {Count(S') == Count(S) + 1};!
 !
 func Top(ref S : Stack {not Is_Empty(S)}) -> ref Component;!
 !
 func Pop(var S : Stack {not Is_Empty(S)}) !
 {Count(S') == Count(S) - 1};!
 !
end interface Stack;!

Safe Pervasively Parallel Language 29

More on Stack Annotations

class Stack <Component is Assignable<>; Size_Type is Integer<>> is!
 const Max_Len : Size_Type;!
 var Cur_Len : Size_Type {Cur_Len in 0..Max_Len};!
 type Index_Type is Size_Type {Index_Type in 1..Max_Len};!
 var Data : Array<optional Component, Indexed_By => Index_Type>; !
 exports!
 {for all I in 1..Cur_Len => Data[I] not null} // invariant for Top()!
 ...!
 func Count(S : Stack) -> Size_Type!
 {Count <= Max_Stack_Size(S)} is!
 return S.Cur_Len;!
 end func Count; !
!
 func Create(Max : Size_Type {Max > 0}) -> Stack!
 {Max_Stack_Size(Create) == Max; Count(Create) == 0} is!
 return (Max_Len => Max, Cur_Len => 0, Data => [.. => null]);!
 end func Create;!
!
 func Push(var S : Stack {not Is_Full(S)}; X : Component)!
 {Count(S') == Count(S) + 1} is!
 S.Cur_Len += 1; // requires not Is_Full(S) precondition!
 S.Data[S.Cur_Len] := X; // preserves invariant (see above)!
 end func Push;!
 !
 func Top(ref S : Stack {not Is_Empty(S)}) -> ref Component is!
 return S.Data[S.Cur_Len];// requires invariant (above) and not Is_Empty!
 end func Top; !
end class Stack;!

Safe Pervasively Parallel Language 30

More on ParaSail Annotations

•  Can declare annotation-only components and operations
inside the “{ ... }”
–  Useful for pseudo-attributes like “taintedness” and states like

“properly_initialized”.

•  Checked at compile-time; no run-time exception handling
–  Exceptions don’t play well when lots of threads running about

–  ParaSail does allow a block, loop, or operation to be “abruptly” exited
with all but one thread killed off in the process.

–  Can be used by a monitoring thread to terminate a block and initiate some
kind of recovery (perhaps due to resource exhaustion):

block!
 Monitor(Resource); !
 exit block with Result => null;!
|| !
 Do_Work(Resource, Data); !
 exit block with Result => Data; !
end block;!

Safe Pervasively Parallel Language 31

Multiply and Conquer

Searching a Game Tree

Safe Pervasively Parallel Language 32

Hippo Game via “multiply”-and-conquer

•  Similar to N-Queens problem
–  Place six hippos on game board so each sits flat

–  Each hippo has 2 posts, each of length 2 to 5

–  Board has 12 holes arranged in 3 rows of 4 each
–  Offset to produce equilateral triangles

–  On order of 6 factorial possible hippo arrangements

•  Rather than “divide-and-conquer” we use a sort of
“multiply” and conquer

–  Conceptually we keep creating more and more game boards, each
with a partial solution

–  We hand out the partial solutions to multiple picothreads and have
them try to solve rest of puzzle

–  Picothread places one more hippo, and then hands out to yet
more picothreads to continue from there

–  First picothread to complete the puzzle kills off all of the others

–  Multiply and conquer means no explicit backtracking

Safe Pervasively Parallel Language 33

Six Hippos, 12 posts, 12 holes

Safe Pervasively Parallel Language 34

An incorrect solution

Safe Pervasively Parallel Language 35

Hippo Game solution – Multiply and conquer (in Parython)
 def Hippo_Game(Graph : Hole_Graph; Pieces : Vector<Hippo_Piece>)!
 -> Game_Solution:!
 Outer!
 for (Index = 0; !
 Open_Holes : Hole_Graph.Node_Set = All_Nodes(Graph);!
 Partial_Solution : Game_Solution = []):!
!
 if Index >= |Pieces|:!
 return Partial_Solution # found a complete solution!
!
 const Piece = Pieces[Index]!
 for Long_Loc in Open_Holes !
 if Graph[Long_Loc].Depth >= Piece.Long concurrent:!
!
 for Short_Loc in Successors(Graph, Long_Loc)!
 if Short_Loc in Open_Holes !
 and Graph[Short_Loc].Depth >= Piece.Short concurrent:!
 # Found a pair of adjacent open holes that work!
 # Add them into the solution we are building.!
 const Next_Solution : Game_Solution =!
 Partial_Solution | {Index : (Long_Loc, Short_Loc)}!
 # Continue the outer iteration with the next piece!
 continue loop Outer with!
 (Index = Index + 1,!
 Open_Holes = Open_Holes – {Long_Loc, Short_Loc},!
 Partial_Solution = Next_Solution)!
!

Termination
condition

Multiply
and

Conquer

Safe Pervasively Parallel Language 36

The (one and only) correct solution

Safe Pervasively Parallel Language 37

Hippo Game Region and Work-Stealing Statistics

Command to execute: Place_Hippos

Piece 4,3 is at 11,21

Piece 5,2 is at 12,13

Piece 5,4 is at 14,24

Piece 4,2 is at 33,22

Piece 5,3 is at 23,34

Piece 3,2 is at 32,31

Command to execute: stats

Region Statistics:

 New allocations by owner: 7326 = 78%

 Re-allocations by owner: 849 = 9%

 Total allocations by owner: 8175 = 87%

 New allocations by non-owner: 851 = 9%

 Re-allocations by non-owner: 348 = 3%

 Total allocations by non-owner: 1199 = 12%

 Total allocations: 9374

Threading Statistics:

 Num_Initial_Thread_Servers : 3 + 1

 Num_Dynamically_Allocated_Thread_Servers : 0

 Max_Waiting_Threads (on some server's queue): 25

 Average waiting threads: 12.89

 Max_Active (threads): 4

 Average active threads: 3.76

 Max_Active_Masters : 32

 Max_Subthreads_Per_Master : 16

 Max_Waiting_For_Subthreads : 29

 Num_Thread_Steals : 210 out of 1097 total thread
initiations = 19%

Safe Pervasively Parallel Language 38

Summary and Conclusions
(and a plug for HILT 2014)

Safe Pervasively Parallel Language 39

Summary of ParaSail Iterators

•  Flexible Iterators simplify walking a large Data Structure or
Data Space

–  Sequential equivalents such as while loops and tail recursion do not
easily adapt to parallel interpretation

–  Next value not available until end of current iteration

–  Each iteration should carry its “own” loop-var values

•  Potential for significant speed-up can be enabled simply
through use of higher-level iterators with safe parallel
semantics

–  Parallel versions of “continue,” “exit,” and “return” add to power and
flexibility – bag of iterations model – can exit and cancel all others

•  Three kinds of iterators

–  Explicit “value” iterator – Start, Next, While + continue – bag of threads

–  Set iterator – User provides Remove_{Any,First,Last} operation

–  Map iterator – User provides Index_Set and Indexing operations

•  Flexible Map/Reduce construct built using iterator

Safe Pervasively Parallel Language 40

Summary of ParaSail Annotations

•  Incorporating Annotations into syntax allows more
complete specification of abstractions

•  Preconditions can be used to propagate safety
requirements to caller

•  Compiler complaints about remaining possible run-time
errors inidicates where more annotations are needed

•  Effectively provides compile-time exception handling;
remaining run-time problems handled otherwise:

–  Null values can be used uniformly to signal no result
–  Only can happen if function result declared optional

–  Separate threads can be used to monitor for unpredictable error
situations

–  Resource exhaustion

–  Time-outs

Safe Pervasively Parallel Language 41

Conclusions

•  Simple language can still be powerful

•  Can eliminate features which create a
sequential bias

•  Can provide a language in which simple
things are simple

•  But can still build complex, parallel
applications that are inherently safe

Safe Pervasively Parallel Language 42

HILT 2014 – High Integrity Language Technology – Oct 20-21

•  Using modeling, programming, verification, …
languages to support development, testing, and
verification of High Integrity systems

•  Co-Located with SPLASH/OOPSLA 2014 in October in
Portland, OR, USA, October 20-24

•  Join Program Committee, and submit papers

 HILT 2014

