
Ada 2012, SPARK 2014, and
Combining Proof and Test!

Languages and Tools for High Integrity

Bergen, Norway

February, 2014	

Presentation cover
page EU

www.adacore.com	

Tucker Taft
AdaCore Inc

Ada 2012, SPARK 2014, Proof + Test 2

•  Cost of testing greater than cost of development

•  10% increase each year for avionics software (Boeing META
Project)

•  Uneven partitioning:

•  Uneven quality: 80% of errors traced to 20% of code
 (NASA Software Safety Guidebook)

•  Need to reduce and focus the cost of testing

! 80% of effort!!

Cost of testing

Ada 2012, SPARK 2014, Proof + Test 3

Formal methods […] might be the
primary source of evidence for
the satisfaction of many of the
objectives concerned with
development and verification.!

2011: Formal Methods Supplement (DO-333)!

DO-178C: formal methods can replace testing!DO-178C: formal methods can replace testing

Ada 2012, SPARK 2014, Proof + Test 4

! 80% of !
testing effort!

Proof+test goal: using formal verification first, then
testing…

! 80% of !
formal effort!

… to reduce and focus the cost of
verification

testing!

formal!

Cost of verification

Ada 2012, SPARK 2014, Proof + Test 5

Proof + Test!SPARK 2014 + !
Ada 2012!

Ada 2012, SPARK 2014, Proof + Test 6

{P}C{Q} Hoare logic (1969)!

logic contracts!
for proofs!
!
SPARK (1987)!

	

executable contracts!
for tests!
!
Eiffel DbC (1986)!

	

SPARK 2014: Executable Annotation
Language!

based on Ada 2012!

Programming Contracts

Ada 2012, SPARK 2014, Proof + Test 7

Ada 2012 Programming by contract
•  Pre- and post-conditions for subprograms:

–  Call is legal if initial conditions satisfy precondition predicate

–  Subprogram works properly if result satisfies postcondition
predicate

•  Type invariants for an abstraction:
–  Every externally accessible value of the type must satisfy a

consistency condition

–  For private types and type extensions: specify a consistency
condition that objects of the type must obey (e.g. the entries in a
bar chart must add up to 100%)

–  Interacts well with OOP

•  Subtype predicates to define applicability:
–  Only a subset of the values of the type satisfy a named predicate

Ada 2012, SPARK 2014, Proof + Test 8

Ada 2012 has built-in support

for run-time contract checking

Ada 2012, SPARK 2014, Proof + Test 9

generic
 type Item is private;
package Stack_Interfaces is
 type Stack is interface;
 function Is_Empty (S : Stack) return Boolean is

abstract;
 function Is_Full (S : Stack) return Boolean is

abstract;

 procedure Push (S : in out Stack; I : in Item) is

abstract
 with Pre'Class => not Is_Full (S),
 Post'Class => not Is_Empty (S);
 private
…

end Stack_Interfaces;

Ada 2012 Pre- and Postconditions

Ada 2012, SPARK 2014, Proof + Test 10

package Bars is
 type Bar_Chart is private
 with Type_Invariant => Is_Complete(Bar_Chart);
 function Is_Complete (X : Bar_Chart) return Boolean;
private
 type Bar_Chart is array (1 .. 10) of Integer;
 end Bars;

package body Bars is
 function Is_Complete (X : Bar_Chart) is
 -- verify that component values add up to 100
end;

Ada 2012 Type invariants

Ada 2012, SPARK 2014, Proof + Test 11

Contracts and Program Correctness
•  Contracts help the programmer (force the programmer?) to make

his intention more explicit (strong typing is an earlier step in the
same direction).

•  Checking of contract may be
–  static (compiler)
–  dynamic (run-time assertions)

•  Contracts help develop testing protocols

•  Contracts complement and assist static analysis tools

•  Ada 2012 is one of the first mainstream language to incorporate
contracts as a general programming tool

Ada 2012, SPARK 2014, Proof + Test 12

generic
 type Item is private;
package Stack_Interfaces is
 type Stack is interface;
 function Is_Empty (S : Stack) return Boolean is abstract;
 function Is_Full (S : Stack) return Boolean is abstract;

 procedure Push (S : in out Stack; I : in Item) is abstract;

 function Pop (S : in out Stack) return Item is abstract;

end Stack_Interfaces;

Abstract Stack Interface

Ada 2012, SPARK 2014, Proof + Test 13

generic
package Stack_Interfaces.Bounded is
 type Bounded_Stack(<>) is new Stack with private;
 function Create(Size: Natural) return Bounded_Stack;

 function Size(S : Bounded_Stack) return Natural;
 function Count(S : Bounded_Stack) return Natural;

 function Is_Empty (S : Bounded_Stack) return Boolean
 is (Count(S) = 0); -- expression functions
 function Is_Full (S : Stack) return Boolean
 is (Count(S) = Size(S)); -- expression functions

 procedure Push (S : in out Bounded_Stack; I : in Item);

 function Pop(S : in out Bounded_Stack) return Item;

private …

Bounded Stack implements Stack Interface

Ada 2012, SPARK 2014, Proof + Test 14

generic
package Stack_Interfaces.Bounded is
 …
private
 type Item_Array is array(Positive range <>) of Item;
 type Bounded_Stack(Size : Natural) is new Stack with record
 Count : Natural := 0;
 Data : Item_Array(1..Size);
 end record;
end Stack_Interfaces.Bounded;

package body Stack_Interfaces.Bounded is
 …
 procedure Push (S : in out Bounded_Stack; I : in Item) is
 begin
 S.Count := S.Count + 1;
 S.Data(S.Count) := I;
 end Push;
end Stack_Interfaces.Bounded;

Bounded Stack Internals

Ada 2012, SPARK 2014, Proof + Test 15

What sort of Pre- and Postconditions are
appropriate here?

•  Preconditions prevent failures; Postconditions define effects

•  Push will get an index out of bounds if S.Count = S.Size on entry

•  Create precondition to prevent that:
procedure Push(…) with Pre => Count(S) < Size(S);

•  Now we have the following code:
Stk : BI_Inst.Bounded_Stack := BI_Inst.Create(10);

...

BI_Inst.Push(Stk, X); -- Can we be sure this will satisfy the Pre?

•  We need a Post on Create to know initial Size and Count:
function Create(…) return Bounded_Stack

 with Post => Bounded.Size(Create’Result) = Size

 and Count(Create’Result) = 0;

•  We also need a Post on Push itself so 10 Pushes are known safe:
procedure Push(…) with Pre => Count(S) < Size(S),

 Post => Count(S) = Count(S)’Old + 1;

Ada 2012, SPARK 2014, Proof + Test 16

generic
package Stack_Interfaces.Bounded is
 type Bounded_Stack(<>) is new Stack with private;
 function Create(Size: Natural) return Bounded_Stack
 with Post => Bounded.Size(Create’Result) = Size
 and Count(Create’Result) = 0;
 function Size(S : Bounded_Stack) return Natural;
 function Count(S : Bounded_Stack) return Natural
 with Post => (Count(S) <= Size(S));
 function Is_Empty (S : Bounded_Stack) return Boolean
 is (Count(S) = 0);
 function Is_Full (S : Stack) return Boolean
 is (Count(S) = Size(S));

 procedure Push (S : in out Bounded_Stack; I : in Item)
 with Pre => Count(S) < Size(S),
 Post => Count(S) = Count(S)’Old + 1;
 function Pop(S : in out Bounded_Stack) return Item
 with Pre => Count(S) > 0,
 Post => Count(S) = Count(S)’Old – 1;
private …

Bounded Stack with Pre/Postconditions

Ada 2012, SPARK 2014, Proof + Test 17

Now suppose we use the abstract stack…
•  Imagine we have a class-wide operation:

procedure Replace_Top(S : in out Stack’Class; I : Item) is

 Discard : constant Item := Pop(S);

begin

 Push(S, I);

end Replace_Top;

•  Need a classwide precondition on Pop, and a normal
precondition on Replace_Top to make things safe:

function Pop(…) with Pre’Class => not Is_Empty(S)

procedure Replace_Top(…) with Pre => not Is_Empty(S);

•  Need a classwide postcondition on Push and a normal
postcondition on Replace_Top to safely do it twice:

procedure Push(…) with Post’Class => not Is_Empty(S)

procedure Replace_Top(…) with Post => not Is_Empty(S)

•  Classwide pre/postconds must be checked on overridings

Ada 2012, SPARK 2014, Proof + Test 18

generic
 type Item is private;
package Stack_Interfaces is
 type Stack is interface;
 function Is_Empty (S : Stack) return Boolean is abstract;
 function Is_Full (S : Stack) return Boolean is abstract;

 procedure Push (S : in out Stack; I : in Item) is abstract
 with Pre'Class => not Is_Full (S),
 Post'Class => not Is_Empty (S);
 function Pop (S : in out Stack) return Item is abstract
 with Pre'Class => not Is_Empty (S),
 Post'Class => not Is_Full (S);

end Stack_Interfaces;

Abstract Stack with Pre/Postconditions

Ada 2012, SPARK 2014, Proof + Test 19

Now should verify that Bounded_Stack will abide
by ancestor’s Pre’Class and Post’Class

•  Ancestor type Stack specifies:
 procedure Push (S : in out Bounded_Stack; I : in Item)
 with Pre'Class => not Is_Full (S),
 Post'Class => not Is_Empty (S);
•  Bounded_Stack explicitly specifies:
 function Is_Empty (S : Bounded_Stack) return Boolean
 is (Count(S) = 0); -- not Is_Empty == Count(S) /= 0
 function Is_Full (S : Stack) return Boolean
 is (Count(S) = Size(S)); -- not Is_Full == Count(S) /= Size(S)
 procedure Push (S : in out Bounded_Stack; I : in Item)
 with Pre => Count(S) < Size(S),
 Post => Count(S) = Count(S)’Old + 1;
•  Liskov Substitution Principle (LSP) says:

–  Caller sees ancestor precondition, so must imply descendant
precondition

–  Caller sees ancestor postcondition, so must be implied by
descendant postcondition

–  Verified:
Count(S) /= Size(S) and Count(S) <= Size(S) " Count(S) < Size(S)
Count(S) = Count(S)’Old+1 and Count(S)’Old >= 0 " Count(S) /= 0

Ada 2012, SPARK 2014, Proof + Test 20

Ada 2012 and Liskov Substitution Principle
•  Ada 2012 compiler is not required to statically check that

Pre’Class implies Pre nor that Post implies Post’Class
–  Ada 2012 compiler is only required to do run-time checks

–  Other tools can attempt proofs that the run-time checks will not fail

•  Ada 2012 language ensures implications by effectively:
–  “or”ing Pre’Class of ancestors with Pre’Class of descendant,

and

–  “and”ing Post’Class of ancestors with Post’Class of descendant

•  The Pre’Class “or”ing is done “implicitly”:
–  In a “dispatching” call, caller only checks the Pre’Class

annotations that they can “see”;

–  Pre’Class of descendants of T where controlling operand is of
type T’Class are not even checked.

•  The Post’Class “and”ing is done by checking all of them.

Ada 2012, SPARK 2014, Proof + Test 21

package Bars is
 type Bar_Chart is private
 with Type_Invariant => Is_Complete(Bar_Chart);
 function Is_Complete (X : Bar_Chart) return Boolean;
private
 type Bar_Chart is array (1 .. 10) of Integer;
 end Bars;

package body Bars is
 function Is_Complete (X : Bar_Chart) is
 -- verify that component values add up to 100
end;

Ada 2012 Type invariants

Ada 2012, SPARK 2014, Proof + Test 22

The Role of Type Invariants
•  Type invariants are used to encode some property that

is preserved by all operations on a type.

–  Becomes implicit Pre and Post condition for every operation

•  Type invariants are generally introduced when attempts
to prove that a given postcondition is satisfied requires
that all operations guarantee certain minimum
requirements.

•  Example:
–  Imagine a stack of pointers, and we ensure that Push is only

passed not null pointers.
–  Can we ensure that Pop returns only not null values back?

–  Solution is to come up with a Type_Invariant that says:
–  All elements at or “below” the stack pointer are /= null

–  Then show that Push (and other ops) preserve it.

–  Note that type invariants are often representation specific
–  In Ada 2012, they can be given in the private part.

Ada 2012, SPARK 2014, Proof + Test 23

generic
 type T(<>) is limited private;

 type T_Ptr is access T;
package Pointer_Stacks is
 type Pointer_Stack is private;
 procedure Push(PS : in out Pointer_Stack; Ptr : not null T_Ptr);
 function Pop(PS : in out Pointer_Stack) return not null T_Ptr;
private
 type Ptr_Array is array(Positive range <>) of T_Ptr;
 type Pointer_Stack(Size : Natural) is record
 Count : Natural := 0;
 Data : Ptr_Array(1..Size) := (others => null);
 end record
 with Type_Invariant =>
 (for all I in 1..Pointer_Stack.Count =>
 Pointer_Stack.Data(I) /= null);
end Pointer_Stacks;

Pointer Stack Type Invariant

Ada 2012, SPARK 2014, Proof + Test 24

 …
 type Pointer_Stack(Size : Natural) is record
 Count : Natural := 0;
 Data : Ptr_Array(1..Size) := (others => null);
 end record
 with Type_Invariant =>
 (for all I in 1..Pointer_Stack.Count =>
 Pointer_Stack.Data(I) /= null);
end Pointer_Stacks;
package body Pointer_Stacks is
 procedure Push(PS : in out Pointer_Stack; Ptr : not null T_Ptr) is
 begin
 PS.Count := PS.Count + 1; PS.Data(PS.Count) := Ptr;
 end Push;
 function Pop(PS : in out Pointer_Stack) return not null T_Ptr is
 begin
 PS.Count := PS.Count – 1; return PS.Data(PS.Count + 1);
 end Pop;
end Pointer_Stacks;

Verify Pointer Stack Type Invariant

Ada 2012, SPARK 2014, Proof + Test 25

Subtype Predicates
Static_Predicate and Dynamic_Predicate

•  A subtype “predicate” is a generalization of the notion
of a “constraint”

–  It identifies a subset of the values of a type or subtype

•  Examples of constraints:
–  subtype Digit is Integer range 0..9

–  “range 0..9” is a range constraint

–  Data : Ptr_Array(1..Size)
–  “(1..Size)” is an index constraint

•  Examples of predicates:

–  subtype Long_Weekend is Weekday

 with Static_Predicate =>

 Long_Weekend in Friday | Saturday | Sunday | Monday;

–  subtype Operator_Node is Node

 with Dynamic_Predicate =>

 Operator_Node.Kind in Unary_Kind | Binary_Kind;

Ada 2012, SPARK 2014, Proof + Test 26

Static vs. Dynamic Predicates
•  Static_Predicate:

–  Must apply to a scalar or string type and may involve one or more
comparisons between the value being tested and static values

–  All possible values can be determined statically

–  Subtypes with such a predicate can be used as the choice in a case
statement or the bounds of a loop iteration

–  Initialized objects to which such a predicate applies always satisfy the
predicate

•  Dynamic_Predicate:
–  Defined by an arbitrary boolean expression involving the value being

tested

–  All possible values need not be determinable statically

–  Subtypes with such a predicate can be used to declare an object and
in a membership test, but may not be used for looping or as choices in
a case statement

–  Some violations of the predicate might not be immediately detected
–  Only checked on certain “whole object” operations

Ada 2012, SPARK 2014, Proof + Test 27

•  Allows indexing over containers, with and without
cursors:

 for Cursor in Iterate (Container) loop

 Container (Cursor) := Container (Cursor) + 1;

 end loop;

 for Thing of Box loop

 Modify (Thing);

 end loop;

 Both forms apply to arrays and containers.

Ada 2012 Container/Array Iterators

Ada 2012, SPARK 2014, Proof + Test 28

 State that A is sorted:

 (for all J in A'First .. T'Pred (A'Last) =>
 A (J) <= A (T'Succ (J)))

 State that N is not a prime number:

 (for some X in 2 .. N / 2 =>
 N mod X = 0)

 some is a new reserved word

Ada 2012 Quantified expressions

Ada 2012, SPARK 2014, Proof + Test 29

SPARK 2014 Builds on Ada 2012

•  Remove features that can create aliasing
–  No access types

–  No parameter aliasing

–  No undeclared use of global variables

•  Add annotations to specify information flow
–  Global variable usage

–  Information flow dependence

–  Named abstract state variables to represent package state
–  Refined in package body

package Random with Abstract_State => Seed is!
 function Next_Rand return Float!
 with Global => (In_Out => Seed),!
 Depends => (Seed => Seed,!
 Next_Rand’Result => Seed),!
 Post => Next_Rand’Result in 0.0 .. 1.0;!

Ada 2012, SPARK 2014, Proof + Test 30

SPARK 2014 toolset
based on open-source “Hi-Lite”Project

Ada 2012, SPARK 2014, Proof + Test 31

R
Q

P

P
Q

P calls Q

prove pre of Q
assume post of Q

assume pre of Q
prove post of Q

P
Q

P calls Q

use Q code
cover P constructs

actual body of Q
or stub…

global soundness argument:
all functions proved
" all assumptions justified

local exhaustivity argument:
each function covered
#  enough behaviors
 explored

Testing vs. Formal Verification

Ada 2012, SPARK 2014, Proof + Test 32

verification combining tests and proofs should be
AT LEAST AS GOOD AS

verification based on tests only

P
Q

P calls Q

P is tested

Q is proved Q calls P

How do we justify
assumptions made
during proof?

Combining tests and proofs

Ada 2012, SPARK 2014, Proof + Test 33

) …

data dependences

parameters not
aliased

parameters
initialized

strong typing

Caution: contracts are not only pre/post!

Ada 2012, SPARK 2014, Proof + Test 34

P
Q

P calls Q

P is tested

Q is proved

during testing:	

check that 	

pre-condition of Q 	

is respected	

assumption for proof:	

pre-condition of Q	

is respected	

Combination 1: tested calls proved

Ada 2012, SPARK 2014, Proof + Test 35

P
Q

P is tested

Q is proved Q calls P

during testing:	

check that 	

post-condition of P 	

is respected	

assumption for proof:	

post-condition of P	

is respected	

Combination 2: proved calls tested

Ada 2012, SPARK 2014, Proof + Test 36

R
Q

P

global soundness argument:
-  proof: assumptions proved
-  test: assumptions tested

tested

proved

proved

local exhaustivity argument:
-  test: function covered
-  proof: by nature of proof

Testing must check additional properties!
Done by compiler instrumentation!

Testing + Formal Verification

Ada 2012, SPARK 2014, Proof + Test 37

Ada 2012
compiler/
front end!

Ada unit
testing!

SPARK +
SMT solver
unit proof!

executable!

aggregated!
verification!
results!

Proof + Test toolsuite

Slide: 38 Copyright © 2014 AdaCore

Claire Dross, Pavlos Efstathopoulos, David Lesens, David Mentré and Yannick Moy

Embedded Real Time Software and Systems – February 5th, 2014

Rail, Space, Security: Three Case Studies for SPARK 2014

Slide: 39 Copyright © 2014 AdaCore

SPARK 2014

Slide: 40 Copyright © 2014 AdaCore

programming language for long-
lived embedded critical software

Ada 2012 and SPARK 2014

Ada subset for formal
verification

programming by contract

practical formal verification

Slide: 41 Copyright © 2014 AdaCore

SPARK 2014 Value Proposition

Functional Requirement Functional Verification

Software Architecture Software Architecture
Verification

Unit Requirements Unit Verification

Code Robustness Verification

Slide: 42 Copyright © 2014 AdaCore

SPARK 2014 Value Proposition (DO-178C Version)

System Requirements

High Level
Requirements

Low Level
Requirements Software Architecture

Source Code

Executable Object
Code

Compliance
Robustness

Property
Preservation

Software architecture
is consistent

Accuracy
Consistency

Slide: 43 Copyright © 2014 AdaCore

Contract = agreement between client & supplier

SPARK 2014 Contracts

Program

caller & callee
Contract = agreement between client & supplier

Dynamic
Verification

Formal
Verification

Slide: 44 Copyright © 2014 AdaCore

Case Studies

Slide: 45 Copyright © 2014 AdaCore

Case study 1: Train Control Systems

David Mentré

Slide: 46 Copyright © 2014 AdaCore

openETCS

•  Open Source #
no vendor lock-in

•  Model based
(SysML)

•  Formal methods
Strong
guaranties of
correctness

•  “Open Proofs” #
Everybody can
re-check

Slide: 47 Copyright © 2014 AdaCore

Formalization of the Correctness of Step Functions

Has_Same_Delimiters?

Get_Value?
Minimum_Until_Point? Restrictive_Merge?

Slide: 48 Copyright © 2014 AdaCore

Results

SPARK 2014 very good for:
•  Capturing objects in the requirements
•  Readability of the specifications (= contracts)
•  Automatic proof of absence of run-time errors
•  Automatic proof of simple functional contracts
•  Dynamic verification of contracts and assertions

SPARK 2014 is not good for:
•  Proving existing code without any modifications
•  Proving automatically complex functional contracts

Areas requiring improvements:
•  Possibility to prove some properties interactively (in 2014 roadmap)
•  Better diagnostic for incomplete loop invariants (in 2014 roadmap)
•  Training for developers to use proof tools (available in SPARK Pro subscription)
•  Workflow to make efficient use of developers’ time (in progress)

Slide: 49 Copyright © 2014 AdaCore

Case study 2: Flight Control and Vehicle
Management in Space

 David Lesens

Slide: 50 Copyright © 2014 AdaCore

On Board Control Procedure

•  On-board control procedure
–  Software program designed to be executed by an OBCP engine, which can

easily be loaded, executed, and also replaced, on-board the spacecraft

•  OBCP code
–  Complete representation of an OBCP, in a form that can be loaded on-board

for subsequent execution

•  OBCP engine
–  Application of the on-board software handling the execution of OBCPs

•  OBCP language
–  Programming language in which OBCP source code is expressed by human

programmers

Slide: 51 Copyright © 2014 AdaCore

Formalization of the Correctness of 1505 Subprograms

procedure Reset_Event_Status (Event : in T_Event) with

Post =>

 not Event_Status (Event).Detection and

 (for all Other_Event in T_Event =>

 (if Other_Event /= Event then

 Event_Status (Other_Event) = Event_Status'Old (Other_Event)));

Example:
$  A list of event detection statuses
$  Request to reset the detection status for Event

The detection status is unchanged

Post-condition

The detection of event is reset

For all other events

Event1 Event2 Event3

Not detected Detected Detected

Event1 Event2 Event3

Not detected Not detected Detected

Event1 Event2 Event3

Not detected Not detected Detected

Event1 Event2 Event3

Not detected Not detected Detected

Slide: 52 Copyright © 2014 AdaCore

Numerical control/command algorithms

Mission and vehicle management

Formal Verification of Aerospace Software, DASIA 2013,
http://www.open-do.org/wp-content/uploads/2013/05/DASIA_2013.pdf

Automatic Proof Results

Part # subprograms # checks % proved
Math library 15 27 92
Numerical algorithms 30 265 98

Part # subprograms # checks % proved
Single variable 85 268 100
List of variables 140 252 100
Events 24 213 100
Expressions 331 1670 100
Automated proc 192 284 74
On board control proc 547 2454 95

Slide: 53 Copyright © 2014 AdaCore

SPARK 2014 very good for:
•  Proof of absence of run-time errors
•  Correct access to all global variables
•  Absence of out-of-range values
•  Internal consistency of software unit

•  Correct numerical protection
•  Correctness of a generic code in a specific context

SPARK 2014 is good for:
•  Proof of functional properties

Areas requiring improvements:
•  Sound treatment of floating-points (done)

•  Support of tagged types (in 2014 roadmap)

•  Helping user with unproved checks (in 2014 roadmap)

Results

Slide: 54 Copyright © 2014 AdaCore

Case study 3: Biometric Access to a
Secure Enclave

Pavlos Efstathopoulos

Slide: 55 Copyright © 2014 AdaCore

Tokeneer

Slide: 56 Copyright © 2014 AdaCore

Aspect / Pragma Num. of occurrences
Global 197
Refined_Global 71
Refined_Depends 40
Depends 202
Pre 28
Post 41
Assume 3
Loop_Invariant 10

Formalization of the “Admin” Package

Dataflow

Information
flow

Refinement

Functional
contracts

User guidance

Assumptions

Slide: 57 Copyright © 2014 AdaCore

SPARK 2014 very good for:
•  Expressing specification-only code
•  Analysis of code that was not analyzable with SPARK 2005
•  Automating proofs with less user efforts
•  Expressing complete functional behavior of functions

•  Readability of the formal specifications

•  Uncovering corner cases related to run-time checks

Areas requiring improvements:
•  Summary of proof results (done)

Results

Slide: 58 Copyright © 2014 AdaCore

Lessons Learned

Slide: 59 Copyright © 2014 AdaCore

SPARK 2014 Strengths

executable
contracts

better
automation
of proofs

expressive
yet analyzable

language

Slide: 60 Copyright © 2014 AdaCore

SPARK 2014 Challenges

static
debugging

of contracts
need

expert advice
sometimes

code and
specifications

must be
adapted

Slide: 61 Copyright © 2014 AdaCore

SPARK in 2014

Slide: 62 Copyright © 2014 AdaCore

Now available as beta
First release April 2014

See http://www.adacore.com/sparkpro
and http://www.spark-2014.org

New LabCom ProofInUse between AdaCore
and INRIA
(hiring 2 R&D software engineer postdocs)

Roadmap

Ada 2012, SPARK 2014, Proof + Test 63

Conclusion!SPARK 2014!
proof + test!

Ada 2012, SPARK 2014, Proof + Test 64

Conclusions

•  Ada 2012 supports contract-based programming
–  Pre, Post, Type_Invariant, *_Predicate annotations

–  Executable semantics

•  SPARK 2014 builds on Ada 2012
–  Provides formal static verification of contract annotations

–  Adds annotations for global variable usage and information flow

–  Supported by new open-source toolset based on Why3 and SMT

•  Proof + Test approach supports real-world applications
–  Get best of static and dynamic verification

–  Reduces overall cost while increasing confidence

Ada 2012, SPARK 2014, Proof + Test 65

•  Soundness

•  Applicability to the code

•  Usability by normal engineers on normal
computers

•  Improve on classical methods

•  Certifiability
ongoing research!

Airbus “must-have”s for formal methods

Ada 2012, SPARK 2014, Proof + Test 66

How to learn more!

•  http://www.spark-2014.org

•  http://www.ada2012.org

•  http://www.adacore.com

 S. Tucker Taft, VP & Director of Language Research
 AdaCore
 24 Muzzey Street 3rd Floor
 Lexington, MA 02421 USA

 taft@adacore.com

