
Testing with Concepts and Axioms
(in Magnolia)

Anya Helene Bagge

BLDL

BLDL High Integrity Day
2014-02-11

Anya Helene Bagge (BLDL) Axiom Testing 2014-02-11 1 / 30

Introduction

Testing is good for you:
Do it.
A lot!

Unit testing:
Test modules in isolation

Anya Helene Bagge (BLDL) Axiom Testing 2014-02-11 2 / 30

Unit Testing

Traditional unit testing is case-based:

Test Case for max():

@Test
public void maxTest() {
assertEqual(10, max(3, 10));
assertEqual(10, max(10, 10));

}

So, what does max really do?
Pick the right-hand side argument?
Always return 10?

Anya Helene Bagge (BLDL) Axiom Testing 2014-02-11 3 / 30

Unit Testing

Traditional unit testing is case-based:

Test Case for max():

@Test
public void maxTest() {
assertEqual(10, max(3, 10));
assertEqual(10, max(10, 10));

}

So, what does max really do?
Pick the right-hand side argument?
Always return 10?

Anya Helene Bagge (BLDL) Axiom Testing 2014-02-11 3 / 30

Unit Testing

Traditional unit testing is case-based:

Test Case for max():

@Test
public void maxTest() {
assertEqual(10, max(3, 10));
assertEqual(10, max(10, 10));

}

So, what does max really do?
Pick the right-hand side argument?
Always return 10?

Anya Helene Bagge (BLDL) Axiom Testing 2014-02-11 3 / 30

Unit Testing

Traditional unit testing is case-based:

Test Case for max():

@Test
public void maxTest() {
assertEqual(10, max(3, 10));
assertEqual(10, max(10, 10));

}

So, what does max really do?
Pick the right-hand side argument?
Always return 10?

Anya Helene Bagge (BLDL) Axiom Testing 2014-02-11 3 / 30

Unit Testing

We might add more cases:

@Test
public void testAdd() {

Fraction a = new Fraction(1, 2);
Fraction b = new Fraction(2, 3);

assertFraction(1, 1, a.add(a));
assertFraction(7, 6, a.add(b));
assertFraction(7, 6, b.add(a));
assertFraction(4, 3, b.add(b));

Fraction f1 = new Fraction(Integer.MAX_VALUE - 1, 1);
Fraction f2 = Fraction.ONE;
Fraction f = f1.add(f2);
assertEquals(Integer.MAX_VALUE, f.getNumerator());
assertEquals(1, f.getDenominator());
// ...

Anya Helene Bagge (BLDL) Axiom Testing 2014-02-11 4 / 30

But...

How many cases do we need?

Rougly twice as many as you can think of... [Myers79]

Can we learn anything useful about the behaviour from reading the tests?

Probably not, but who reads tests anyway?

Can I reuse my tests, or do I have to test Integer.max and Double.max
separately?

Anya Helene Bagge (BLDL) Axiom Testing 2014-02-11 5 / 30

But...

How many cases do we need?

Rougly twice as many as you can think of... [Myers79]

Can we learn anything useful about the behaviour from reading the tests?

Probably not, but who reads tests anyway?

Can I reuse my tests, or do I have to test Integer.max and Double.max
separately?

Anya Helene Bagge (BLDL) Axiom Testing 2014-02-11 5 / 30

But...

How many cases do we need?

Rougly twice as many as you can think of... [Myers79]

Can we learn anything useful about the behaviour from reading the tests?

Probably not, but who reads tests anyway?

Can I reuse my tests, or do I have to test Integer.max and Double.max
separately?

Anya Helene Bagge (BLDL) Axiom Testing 2014-02-11 5 / 30

Axioms to the Rescue!

What are the fundamental properties of max?

∀a, b : max(a, b) == max(b, a)

∀a : max(a, a) == a

∀a, b : max(a, b) >= a ∧max(a, b) >= b

∀a, b : max(a, b) == a ∨max(a, b) == b

Axiom-Based or Property-Based Testing: Generate lots of values for a, b,
and check that the axioms hold.

Anya Helene Bagge (BLDL) Axiom Testing 2014-02-11 6 / 30

Axioms as Parameterised Tests

Axioms for Max

public void maxAxioms(TotalOrder<T> a, TotalOrder<T> b) {
assertEquals(max(a, b), max(b, a));

assertEquals(max(a, a), a);

assertTrue(max(a, b) >= a && assertTrue(max(a, b) >= b));

assertTrue(max(a, b) == a || assertTrue(max(a, b) == b));
}

(In pseudo-Java)

Anya Helene Bagge (BLDL) Axiom Testing 2014-02-11 7 / 30

QuickCheck

You provide a specification in the form of properties or axioms
Automatically generates random data to exercise your axioms
You can specify custom data generators
You can check the distribution of your test data, classify your test
cases and collect statistics about what’s going on
Highly popular with Haskell programmers!

Anya Helene Bagge (BLDL) Axiom Testing 2014-02-11 8 / 30

Axioms as Parameterised Tests

Axioms for Max

import Test.QuickCheck

prop_max1 a = max a a == a
where types = a::Int

prop_max2 a b = max a b == max b a
where types = a::Int

prop_max3 a b = max a b >= a && max a b >= b
where types = a::Int

prop_max4 a b = max a b == a || max a b == b
where types = a::Int

(In Haskell)

Anya Helene Bagge (BLDL) Axiom Testing 2014-02-11 9 / 30

QuickCheck

Running QuickCheck

Main> quickCheck prop_max1
OK, passed 100 tests.

Main> quickCheck prop_max2
OK, passed 100 tests.

Main> quickCheck prop_max3
OK, passed 100 tests.

Main> quickCheck prop_max4
OK, passed 100 tests.

Anya Helene Bagge (BLDL) Axiom Testing 2014-02-11 10 / 30

Bad Max

Axioms for MyMax

import Test.QuickCheck

mymax a b = b

prop_mymax1 a = mymax a a == a
where types = a::Int

prop_mymax2 a b = mymax a b == mymax b a
where types = a::Int

prop_mymax3 a b = mymax a b >= a && mymax a b >= b
where types = a::Int

prop_mymax4 a b = mymax a b == a || mymax a b == b
where types = a::Int

Anya Helene Bagge (BLDL) Axiom Testing 2014-02-11 11 / 30

What Happens?

Running QuickCheck

Main> quickCheck prop_mymax1
OK, passed 100 tests.

Main> quickCheck prop_mymax2
Falsifiable, after 0 tests:
-2
-3

Main> quickCheck prop_mymax3
Falsifiable, after 0 tests:
1
-2

Main> quickCheck prop_mymax4
OK, passed 100 tests.

Anya Helene Bagge (BLDL) Axiom Testing 2014-02-11 12 / 30

Testing with Concepts and Axioms

That’s better...

But there’s still some things to consider. How to make tests that are
Reusable – build advanced specs from fundamental ones
Generic – use the same axioms for int, real, number, ...

Anya Helene Bagge (BLDL) Axiom Testing 2014-02-11 13 / 30

Introduction to Concepts

Concepts are a way to specify interfaces and behaviour in Magnolia
A concept consists of

types
operations
axioms

A concept is essentially an algebraic specification
(Rewriting and optimisation)
Use in axiom-based testing

Terminology is from Tecton (1981); similar feature was rejected from
C++ 2011 (but we also have a library that provides C++ concepts)

Anya Helene Bagge (BLDL) Axiom Testing 2014-02-11 14 / 30

A Concept is...

...a set of types, a set of operations and a set of axioms:

Concept Semigroup

concept Semigroup = {
type T;
function binop(a:T, b:T) : T;

axiom associative (a:T, b:T, c:T) {
assert binop(a, binop(b,c)) == binop(binop(a,b), c);

}
};

A concept is an interface only – no definitions are allowed.

Anya Helene Bagge (BLDL) Axiom Testing 2014-02-11 15 / 30

Building Concepts

Concept Monoid

concept Monoid = {
type T;
function star(a:T, b:T) : T;
use Neutral[binop => star, neutral => one];
use Semigroup[binop => star];

};

Large concepts are built from small ones.

Anya Helene Bagge (BLDL) Axiom Testing 2014-02-11 16 / 30

Building Concepts

Concept Numbers

concept Numbers = {
/∗∗ The type of the numbers. ∗/
type Number;

use UnitRing [T => Number];
use PartialOrder [E => Number];

/∗∗ For numbers, minus one is less than zero and zero is less than one. ∗/
axiom zero_vs_one () {
assert !(zero() <= uminus(one()));
assert !(one() <= zero());

}
};

Numbers is built on 15 other concepts (often reused several times);
BoundedInteger uses 35; arrays use 35-45 (depending on array kind)
Anya Helene Bagge (BLDL) Axiom Testing 2014-02-11 17 / 30

Axioms

Axioms

axiom associative (a:T, b:T, c:T) {
assert binop(a, binop(b,c)) == binop(binop(a,b), c);

}

axiom hashing(a:Hashable, b:Hashable) {
assert a == b => hash(a) == hash(b);

}

universally quantified over parameters
assert gives the actual axiom (multiple allowed)
can use usual logic operators

Anya Helene Bagge (BLDL) Axiom Testing 2014-02-11 18 / 30

Satisfaction

The satisfaction statement connects specification with implementation:

My integer implementation behaves as a bounded integer:

satisfaction boundedInteger32_is_BoundedInteger
= boundedInteger32 models BoundedInteger;

Renaming maps between implementation and specification names

satisfaction myAssocList_is_Dictionary
= myAssocList models Dictionary[Dict => AssocList];

Syntactic requirements are checked statically
Semantic requirements / axioms are checked by testing and/or
verification

Anya Helene Bagge (BLDL) Axiom Testing 2014-02-11 19 / 30

Concepts as Specifications

A concept can be seen as an algebraic specification
We can have many implementations/programs that implement the
specification
Specification is done by relating the behaviour of operations

Not by listing particular inputs and outputs,
nor by listing pre- and postconditions

A complete specification is not always necessary or desirable:
You can do useful testing with what you’ve got
You can refine a specification in a new concept
Error behaviour (or may not) may be better left undefined

Anya Helene Bagge (BLDL) Axiom Testing 2014-02-11 20 / 30

Concept-Based Testing

The basic idea:
Treat axioms as test oracles

Boolean functions that test the implementation given some data
Feed generated test data to the oracles

You must supply a data generator
For every implementation:

Call full test or individual tests
All the paperwork should be handled automatically

tracking errors, axiom coverage, data distribution, ...

Anya Helene Bagge (BLDL) Axiom Testing 2014-02-11 21 / 30

Generating Test Data

(We have this for C++, but not yet for Magnolia)
Use random testing, specific data points or a combination
Generators return sets of test data for a type

Construct using default constructor
List of predefined data
Term generator, run random functions to construct data
Multiple generators can be combined

Anya Helene Bagge (BLDL) Axiom Testing 2014-02-11 22 / 30

Writing Axioms

A rule of thumb for writing axioms is
1 Divide functions into constructors and non-constructors
2 Write axioms for every constructor combined with every

non-constructor
E.g., for a dictionary/hash map, with operations contains, isEmpty, get,
create and put, we have constructors create and put. We then need to
specify:

contains, isEmpty, get applied to a new Dict

contains, isEmpty, get after put
But you may want to leave the specification incomplete

E.g., leaving get(create(), k) undefined

Anya Helene Bagge (BLDL) Axiom Testing 2014-02-11 23 / 30

How’s This Different From Pre/Post Conditions?

You can easily specify relationships:
axiom hashing(a:Hashable, b:Hashable) {
assert a == b => hash(a) == hash(b);

}
axiom pushPop(s:Stack, e:Element) {
assert pop(push(e, s)) == e;

}

Good for generic code
No need to specify details you don’t know yet

Can connect push and pop without going via type invariant

Can specify requirements for parameters

Preconditions still needed for partial functions
Assertions/invariants still useful in algorithms / data structures

Anya Helene Bagge (BLDL) Axiom Testing 2014-02-11 24 / 30

Integration of Implementations

We can also do interesting stuff with integration. For example,

I have a hash table (basically, give me an array and a hash function,
and I’ll give you a dictionary)
It only works if you provide a key type with a hash function

How to test?

I can test the hash function in isolation
I can find a suitable key type by searching for implementations that
satisfy the Hashing concept, and test all of them [or vice versa]

Anya Helene Bagge (BLDL) Axiom Testing 2014-02-11 25 / 30

Example Concept: Dictionary

concept Dictionary = {
type Dict; type Key; type Val;

function create() : Dict;
function put(d:Dict, k:Key, k:Val) : Dict;
function get(Dict, Key) : Val;
predicate contains(d:Dict, k:Key) ;
predicate isEmpty(d:Dict);

axiom dict1(d:Dict, k:Key, v:Val) {
assert get(put(d, k, v), k) == v;
assert contains(put(d, k, v), k);

}
axiom dict2(d:Dict, k:Key, l:Key, v:Val, w:Val) {
if(k != l)
assert get(d, k) == get(put(d, l, w), k);

}
}

Anya Helene Bagge (BLDL) Axiom Testing 2014-02-11 26 / 30

Example Concept: Dictionary

concept Hash = {
type Hashable;
type HashVal;
function hash(a:Hashable) : HashVal;

axiom hashing(a:Hashable, b:Hashable) {
assert a == b => hash(a) == hash(b);

}
}

Anya Helene Bagge (BLDL) Axiom Testing 2014-02-11 27 / 30

Conclusion – Benefits

Build a library of reusable specifications
Less chance of making mistakes

More general than unit testing
You’ll test things you didn’t think of
Can also be done with disciplined use of unit tests, if no tool is available

Integrates well with an interface orconcept-oriented method
Domain engineering, discovering concepts
Writing and specifying concepts
Writing and testing implementations

Implement in different ways, specify and test in one way

Anya Helene Bagge (BLDL) Axiom Testing 2014-02-11 28 / 30

More Info

http://bldl.ii.uib.no/testing.html
Catsfoot – library for C++
JAxT – library for Java

Algebraic Specification
Liskov & Guttag books

Uses of concepts / algebraic specification: Sophus, MTL4, STL
Specification-based Testing

QuickCheck, ASTOOT, JAX, JAxT, DAISTS, Daistish, CASCAT, ...

Anya Helene Bagge (BLDL) Axiom Testing 2014-02-11 29 / 30

	Introduction
	Concepts as Specifications
	Test Generation
	Conclusion

