
Inferring Required Permissions
for Statically Composed Programs

Tero Hasu Anya Helene Bagge Magne Haveraaen
{tero,anya,magne}@ii.uib.no

Bergen Language Design Laboratory
University of Bergen

Hasu, Bagge, Haveraaen (BLDL) Inferring Required Permissions

mailto:tero@ii.uib.no

Hasu, Bagge, Haveraaen (BLDL) Inferring Required Permissions

smartphones—a security risk for users

▶ privacy and usage cost concerns

▶ natively third-party programmable
▶ ”app stores” have programs in large numbers

▶ including malware and ”grayware”

Hasu, Bagge, Haveraaen (BLDL) Inferring Required Permissions

permission-based security models

▶ similar to VAX/VMS ”privileges” introduced in late 70’s
▶ popularized by smartphone OSes
▶ primarily: access control for sensitive APIs
▶ user approval of permissions → security and usability

implications?

Hasu, Bagge, Haveraaen (BLDL) Inferring Required Permissions

permissions—a concern for app developers

declaring permissions
▶ too small a set ; runtime errors
▶ too large a set ; worried users
▶ optimal set ; maintenance hassle

Hasu, Bagge, Haveraaen (BLDL) Inferring Required Permissions

hassle compounds in a cross-platform setting
▶ permission

requirements vary
between platform
releases

▶ often inadequately
documented

▶ an app may come in
multiple variants

▶ sometimes because
of permission
restrictions

▶ can differ per
distribution
channel

Hasu, Bagge, Haveraaen (BLDL) Inferring Required Permissions

permission analysis tools availability

Android Stowaway, Permission Check Tool (both 3rd party)
bada API and Privilege Checker

BB10 none
Harmattan aegis-manifest (automatically generates a declaration)

Symbian Capability Scanner
Tizen API and Privilege Checker
WP7 Store Test Kit (managed code only in WP7 apps)
WP8 none

Hasu, Bagge, Haveraaen (BLDL) Inferring Required Permissions

vendor-supported permission inference

▶ infer required permissions from a program’s platform API use
▶ examine either binaries or source code
▶ current tools for scanning native programs rely on heuristics

▶ dynamic loading and invocation (when allowed) make accurate
analysis difficult/impossible

Hasu, Bagge, Haveraaen (BLDL) Inferring Required Permissions

baseline requirements for a cross-platform
permission management solution

▶ the same solution must work for all platforms
▶ must make it cheaper to deal with app variants

▶ since there can easily be many in a cross-platform setting
▶ we want to request an optimal permission set for each variant
▶ we do not want an app to crash due to runtime permission errors

Hasu, Bagge, Haveraaen (BLDL) Inferring Required Permissions

many differences, many things beyond our control
▶ How do we get permissions?

▶ just ask, system policy grants according to certificate or
download source, user grants on install or at launch or per
operation, manufacturer grants, …

▶ Are there permissions we cannot ask for?
▶ Does platform release affect what we can ask for?

▶ Is our running app guaranteed to have requested permissions?
▶ Can granted permissions be queried at runtime?
▶ Can we specify install time hardware requirements?
▶ Can we do install time adaptation (e.g., which binary)?
▶ Is app submission process arduous?
▶ In app store, can we specify which devices are supported?
▶ Will a build only be deployable to specific devices (IMEI codes)?
▶ etc.

Hasu, Bagge, Haveraaen (BLDL) Inferring Required Permissions

how we might manage permissions

on a uniform, platform-independent basis with tools
▶ app variant specific permission manifests

▶ automate manifest file generation
▶ ungrantable permissions

▶ automatically leave them out
▶ ungranted permissions

▶ support portable implementation of error handling code
▶ hardware requirements

▶ treat uniformly to permissions
▶ both are access capabilities

Hasu, Bagge, Haveraaen (BLDL) Inferring Required Permissions

how we might manage permissions

on an ad hoc, platform-specific basis by developers
▶ compose software configurations that make sense

▶ leave out functionality that is never accessible on a platform
▶ perhaps find workarounds

▶ dynamic (or install time) adaptation to specific device models
and user preferences (e.g., denied permissions)

▶ particularly desirable if app submission process is arduous
▶ useful if granted permissions can be queried at runtime

▶ e.g., consider UI adaptation

Hasu, Bagge, Haveraaen (BLDL) Inferring Required Permissions

portable permission-aware programming
portable
program

on NoPermission
in readAll
 dat = emptyColl;

contains

call readAll(w, dat);
call writeAll(w, dat);

contains

alert NoPermission;

NoPermission
runtime error

uses

DataSrc API

uses

DataTgt API

uses

declared as

readAll

specifies

writeAll

specifies

procedure readAll
(upd sys : System,
out coll : Coll);

declared as

1. interfaces for
abstracting over
platform-specific
implementations of
components

2. language abstraction
for portable runtime
permission error
handling

Hasu, Bagge, Haveraaen (BLDL) Inferring Required Permissions

permission-aware product line
BlackBerry 10
configuration

exporter
engine

(portable)

BB10
contacts
(C++)

file
writer
(C++)

Symbian
configuration

Symbian
contacts
(C++)

Symbian ownCloud Edition
configuration

ownCloud
uploader
(C++)

program SymbianOwnCloud = {
 use ExporterEngine;
 use SymbianContactsSrc;
 use OwnCloudUploadTgt;
};

contains

DataSrc API

uses

DataTgt API

usesmodels models models models

writeAll:
requires NetworkServices,

KErrPermissionDenied -> NoPermission

implements

1. multiple implementations of components, reusable in different
compositions

Hasu, Bagge, Haveraaen (BLDL) Inferring Required Permissions

permission-aware compilation
exporter

main
(portable)

program SymbianOwnCloud = {
 use ExporterEngine;
 use SymbianContactsSrc;
 use OwnCloudUploadTgt;
};

compiler

compiles

exporter
engine

(portable)

on NoPermission
in readAll
 dat = emptyColl;
call readAll(w, dat);
call writeAll(w, dat);

compiles

Symbian
contacts
(C++)

readAll:
KErrPermissionDenied

-> NoPermission

implementsuses

ownCloud
uploader
(C++)

writeAll:
KErrPermissionDenied

-> NoPermission

implementsuses

exporter
engine
(C++)

generates

program
main

(C++)

generates

TRAPD(err, readAll(w, dat));
if (err == KErrPermissionDenied)
 dat = emptyColl;

1. abstract-to-concrete permission error handling translation

Hasu, Bagge, Haveraaen (BLDL) Inferring Required Permissions

permission inference
exporter

main

program SymbianOwnCloud = {
 use ExporterEngine;
 use SymbianContactsSrc;
 use OwnCloudUploadTgt;
};

compiler

exporter
engine

on NoPermission
in readAll
 dat = emptyColl;
call readAll(w, dat);
call writeAll(w, dat);

Symbian
contacts

readAll:
requires

ReadUserData

implements

ownCloud
uploader

writeAll:
requires

NetworkServices

implements

inferred permissions

NetworkServices && ReadUserData

generates

1. program analysis for determining reachable invocations of
operations, and associated permissions

Hasu, Bagge, Haveraaen (BLDL) Inferring Required Permissions

permission resolution

configuration recipe

distribution = side-loaded,
certificate = self-signed,

platform = S60 3.0+
manifest writer

uses

Symbian policy

uses

inferred permissions

compiles

NetworkServices && ReadUserData

manifest

generates

CAPABILITIES NetworkServices ReadUserData

1. automated decision making on permission requests
▶ configuration recipes may require additional information

Hasu, Bagge, Haveraaen (BLDL) Inferring Required Permissions

vendor-specific permission inference

▶ infer required permissions from a program’s platform API use

Hasu, Bagge, Haveraaen (BLDL) Inferring Required Permissions

cross-platform permission inference

▶ infer required permissions from a program’s platform-agnostic
API use

▶ implementations encapsulate platform API use
▶ and: declare permissions for each implementation of said APIs
▶ and: program against said APIs in a language you can analyze to

determine API use

Can reuse the same API:
▶ for multiple platforms (if can implement)
▶ in multiple apps (if suitably general)

Hasu, Bagge, Haveraaen (BLDL) Inferring Required Permissions

favorable language characteristics

interface-based abstraction
▶ to support organizing cross-platform codebases

static analysis friendliness
▶ to allow for accurate inference

Hasu, Bagge, Haveraaen (BLDL) Inferring Required Permissions

adopting the approach

▶ adopt a favorable language, preferably
▶ coding conventions or explicit information about programmer

assumptions may help otherwise

in-source permission annotations
▶ as an extra-language feature (probably within comments)
▶ using any language-provided annotation support
▶ by extending the language

Hasu, Bagge, Haveraaen (BLDL) Inferring Required Permissions

our proof of concept: based on Magnolia

▶ general-purpose research programming language Magnolia

▶ http://magnolia-lang.org/

▶ its implementation provides the required language infrastructure
▶ permission management is just one application for Magnolia

▶ perhaps: address error handling in general (not just permission
errors)

▶ separate idea of partiality from concrete details of error
reporting—Bagge: Separating exceptional concerns (2012)

▶ abstract over different mechanisms—Hasu: Concrete error
handling mechanisms should be configurable (2012)

Hasu, Bagge, Haveraaen (BLDL) Inferring Required Permissions

http://magnolia-lang.org/

Magnolia’s interface-based abstraction

▶ a Magnolia interface is declared as a concept
▶ each concept may have multiple implementations
▶ one implementation may satisfy multiple concepts

Hasu, Bagge, Haveraaen (BLDL) Inferring Required Permissions

Magnolia’s static analysis friendliness

▶ Magnolia avoids ”dynamism”
▶ no pointers, carefully controlled aliasing
▶ no runtime passing of code (e.g., no higher-order functions)
▶ abstract data types, not objects

▶ concrete type and operations known at compile time
▶ makes up for restrictions with extensive support for static

”wiring” of components
▶ Magnolia promotes use of semantically rich concepts

▶ a concept may specify (some) semantics as axioms
▶ an operation may specify use limitations as guards

Hasu, Bagge, Haveraaen (BLDL) Inferring Required Permissions

what & how to declare (static requirements)

▶ platform-specific required permission information (per operation,
per implementation)

▶ as a predicate expression—commonly need &&, sometimes ||
▶ for the Magnolia compiler to statically infer permission

requirements for a program
▶ e.g.,

alert RequiresPermission unless pre SNS_SERVICE()

Hasu, Bagge, Haveraaen (BLDL) Inferring Required Permissions

what & how to declare (dynamic behavior)

▶ platform-agnostic, abstract permission error names
▶ to allow for error-handling in portable code
▶ e.g., alert NoPermissionSocial <: NoPermissionCloud;

▶ mappings between platform-specific, concrete errors and error
names (per operation, per implementation)

▶ for the Magnolia compiler to implement the mapping
▶ e.g., alert NoPermissionSocial if post value == E_

PRIVILEGE_DENIED

Hasu, Bagge, Haveraaen (BLDL) Inferring Required Permissions

domain engineering an exporter:
data extraction and outputting
concept DataSrc = {

use World;
use DataCollection;

procedure readAll(upd sys : System, out coll : Coll);
};

concept DataTgt = {
use World;
use DataCollection;

procedure writeAll(upd sys : System, obs coll : Coll);
};

Hasu, Bagge, Haveraaen (BLDL) Inferring Required Permissions

runtime permission errors

implementation Permissions = {
alert NoPermission;

};

Hasu, Bagge, Haveraaen (BLDL) Inferring Required Permissions

platform-specific permissions
implementation HarmattanPermissions = {

use Permissions;
predicate TrackerReadAccess() = Permission; // Harmattan
predicate TrackerWriteAccess() = Permission; // Harmattan
predicate GrpMetadataUsers() = Permission; // Harmattan
// ...

};

implementation SymbianPermissions = {
use Permissions;
predicate ReadUserData() = Permission; // Symbian
// ...

};
Pardon the verbose syntax!

Hasu, Bagge, Haveraaen (BLDL) Inferring Required Permissions

Symbian-native contacts reader implementation
implementation SymbianNativeContactsSrc =

external C++ datasrc.SymbianContacts {
require type System;
require type Coll;
require SymbianPermissions;
procedure readAll(upd sys : System, out coll : Coll)

alert RequiresPermission unless pre ReadUserData()
alert NoPermission if leaving KErrPermissionDenied
/* more alerts ... */;

};

satisfaction SymbianNativeContactsIsDataSrc = {
use DataCollection; use World; use SymbianPermissions;

} with SymbianNativeContactsSrc
models DataSrc;

Hasu, Bagge, Haveraaen (BLDL) Inferring Required Permissions

same for Harmattan
implementation HarmattanQtContactsSrc =

external C++ datasrc.HarmattanContacts {
require type System;
require type Coll;
require HarmattanPermissions;
procedure readAll(upd sys : System, out coll : Coll)

alert RequiresPermission unless pre
TrackerReadAccess() && TrackerWriteAccess() &&
GrpMetadataUsers()

alert NoPermission unless pre haveQtContactsPerms()
/* more alerts ... */;

};

satisfaction HarmattanQtContactsIsDataSrc = {
use DataCollection; use World; use HarmattanPermissions;

} with HarmattanQtContactsSrc
models DataSrc;

Hasu, Bagge, Haveraaen (BLDL) Inferring Required Permissions

portable code, against platform-agnostic interfaces
implementation DefaultEngine = {

require DataSrc;
require DataTgt;

procedure exportData() {
var sys : System = initialState();
var dat : Coll;
on NoPermission in readAll

dat = emptyColl();
call readAll(sys, dat);
call writeAll(sys, dat);

}
};

Hasu, Bagge, Haveraaen (BLDL) Inferring Required Permissions

one program configuration
program SymbianContactsSaver = {

use DefaultEngine;
use DefaultWorld;
use DefaultDataCollection;
use SymbianNativeContactsSrc;
use CxxFileOut;

};

permission inference
▶ Magnolia compiler assembles a program—only relevant

implementations are included from codebase
▶ permission inference accounts for all operations that appear in

the program

Hasu, Bagge, Haveraaen (BLDL) Inferring Required Permissions

build integration

▶ compiler outputs a permission expression
▶ build tool writes a set of permissions into a manifest file

▶ in a format expected by vendor toolchain

examples
▶ (ACCESS_COARSE_LOCATION ∨ ACCESS_FINE_LOCATION) ∧

BLUETOOTH decide−−−→ {ACCESS_FINE_LOCATION, BLUETOOTH}, as
need not ask for both coarse and fine location on Android

▶ AllFiles ∧ ReadUserData decide−−−→ {ReadUserData}, as getting
AllFiles on Symbian requires manufacturer approval

Hasu, Bagge, Haveraaen (BLDL) Inferring Required Permissions

gain: permission management solution
▶ tools support for avoiding

runtime errors due to
permission
underdeclaration

▶ assuming correct and
complete annotations,
and grantable &
granted permissions
(toggleable in BB10
and iOS)

▶ language support for
handling runtime
permission errors portably

Hasu, Bagge, Haveraaen (BLDL) Inferring Required Permissions

cost: annotation effort

▶ may be able to amortize annotation cost over many projects and
configurations

▶ unlike when manually declared in a per-project-configuration
manifest file

▶ a way to store and perhaps share domain knowledge
▶ ”I know this implementation of this API requires these

permissions”

Hasu, Bagge, Haveraaen (BLDL) Inferring Required Permissions

conclusion

▶ permissions are a concern to smartphone app devs
▶ we proposed a solution for permission management

▶ requires no pre-existing permission tooling
▶ can be applied to cross-platform codebases
▶ no separately declaring permissions for each program

▶ we have tried out the solution
▶ by integrating permission support into Magnolia

Hasu, Bagge, Haveraaen (BLDL) Inferring Required Permissions

Anyxporter—permission management test app
https://github.com/bldl/anyxporter

▶ idea: different data sources,
different permissions—can
create variants

▶ cross-platform codebase,
organized as concepts

▶ currently:
▶ contact data export
▶ for Harmattan and

Symbian
▶ one ”Magnoliafied” build

configuration, with
permission inference

Hasu, Bagge, Haveraaen (BLDL) Inferring Required Permissions

https://github.com/bldl/anyxporter

Anyxporter—contact data export
<?xml version="1.0" encoding="UTF-8"?>
<Contacts> ...

<Contact> ...
<ContactDetail>

<DefinitionName>DisplayLabel</DefinitionName>
<Label>Tero Hasu</Label>

</ContactDetail>
<ContactDetail>

<DefinitionName>EmailAddress</DefinitionName>
<EmailAddress>tero.hasu@ii.uib.no</EmailAddress>

</ContactDetail>
<ContactDetail>

<DefinitionName>Guid</DefinitionName>
<Guid>000000003e7be123-00e18ae873575ee5-41</Guid>

</ContactDetail> ...
</Contact> ...

</Contacts>
Hasu, Bagge, Haveraaen (BLDL) Inferring Required Permissions

