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smartphones—a security risk for users

▶ privacy and usage cost concerns

▶ natively third-party programmable
▶ ”app stores” have programs in large numbers

▶ including malware and ”grayware”
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permission-based security models

▶ similar to VAX/VMS ”privileges” introduced in late 70’s
▶ popularized by smartphone OSes
▶ primarily: access control for sensitive APIs
▶ user approval of permissions → security and usability

implications?
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permissions—a concern for app developers

declaring permissions
▶ too small a set ; runtime errors
▶ too large a set ; worried users
▶ optimal set ; maintenance hassle
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hassle compounds in a cross-platform setting
▶ permission

requirements vary
between platform
releases

▶ often inadequately
documented

▶ an app may come in
multiple variants

▶ sometimes because
of permission
restrictions

▶ can differ per
distribution
channel
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permission analysis tools availability

Android Stowaway, Permission Check Tool (both 3rd party)
bada API and Privilege Checker

BB10 none
Harmattan aegis-manifest (automatically generates a declaration)

Symbian Capability Scanner
Tizen API and Privilege Checker
WP7 Store Test Kit (managed code only in WP7 apps)
WP8 none
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vendor-supported permission inference

▶ infer required permissions from a program’s platform API use
▶ examine either binaries or source code
▶ current tools for scanning native programs rely on heuristics

▶ dynamic loading and invocation (when allowed) make accurate
analysis difficult/impossible
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baseline requirements for a cross-platform
permission management solution

▶ the same solution must work for all platforms
▶ must make it cheaper to deal with app variants

▶ since there can easily be many in a cross-platform setting
▶ we want to request an optimal permission set for each variant
▶ we do not want an app to crash due to runtime permission errors
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many differences, many things beyond our control
▶ How do we get permissions?

▶ just ask, system policy grants according to certificate or
download source, user grants on install or at launch or per
operation, manufacturer grants, …

▶ Are there permissions we cannot ask for?
▶ Does platform release affect what we can ask for?

▶ Is our running app guaranteed to have requested permissions?
▶ Can granted permissions be queried at runtime?
▶ Can we specify install time hardware requirements?
▶ Can we do install time adaptation (e.g., which binary)?
▶ Is app submission process arduous?
▶ In app store, can we specify which devices are supported?
▶ Will a build only be deployable to specific devices (IMEI codes)?
▶ etc.
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how we might manage permissions

on a uniform, platform-independent basis with tools
▶ app variant specific permission manifests

▶ automate manifest file generation
▶ ungrantable permissions

▶ automatically leave them out
▶ ungranted permissions

▶ support portable implementation of error handling code
▶ hardware requirements

▶ treat uniformly to permissions
▶ both are access capabilities
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how we might manage permissions

on an ad hoc, platform-specific basis by developers
▶ compose software configurations that make sense

▶ leave out functionality that is never accessible on a platform
▶ perhaps find workarounds

▶ dynamic (or install time) adaptation to specific device models
and user preferences (e.g., denied permissions)

▶ particularly desirable if app submission process is arduous
▶ useful if granted permissions can be queried at runtime

▶ e.g., consider UI adaptation
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portable permission-aware programming
portable
program

on NoPermission
in readAll
  dat = emptyColl;

contains

call readAll(w, dat);
call writeAll(w, dat);

contains

alert NoPermission;

NoPermission
runtime error

uses

DataSrc API

uses

DataTgt API

uses

declared as

readAll

specifies

writeAll

specifies

procedure readAll
(upd sys : System,
out coll : Coll);

declared as

1. interfaces for
abstracting over
platform-specific
implementations of
components

2. language abstraction
for portable runtime
permission error
handling
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permission-aware product line
BlackBerry 10
configuration

exporter
engine

(portable)

BB10
contacts
(C++)

file
writer
(C++)

Symbian
configuration

Symbian
contacts
(C++)

Symbian ownCloud Edition
configuration

ownCloud
uploader
(C++)

program SymbianOwnCloud = {
  use ExporterEngine;
  use SymbianContactsSrc;
  use OwnCloudUploadTgt;
};

contains

DataSrc API

uses

DataTgt API

usesmodels models models models

writeAll:
requires NetworkServices,

KErrPermissionDenied -> NoPermission

implements

1. multiple implementations of components, reusable in different
compositions
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permission-aware compilation
exporter

main
(portable)

program SymbianOwnCloud = {
  use ExporterEngine;
  use SymbianContactsSrc;
  use OwnCloudUploadTgt;
};

compiler

compiles

exporter
engine

(portable)

on NoPermission
in readAll
  dat = emptyColl;
call readAll(w, dat);
call writeAll(w, dat);

compiles

Symbian
contacts
(C++)

readAll:
KErrPermissionDenied

-> NoPermission

implementsuses

ownCloud
uploader
(C++)

writeAll:
KErrPermissionDenied

-> NoPermission

implementsuses

exporter
engine
(C++)

generates

program
main

(C++)

generates

TRAPD(err, readAll(w, dat));
if (err == KErrPermissionDenied)
  dat = emptyColl;

1. abstract-to-concrete permission error handling translation
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permission inference
exporter

main

program SymbianOwnCloud = {
  use ExporterEngine;
  use SymbianContactsSrc;
  use OwnCloudUploadTgt;
};

compiler

exporter
engine

on NoPermission
in readAll
  dat = emptyColl;
call readAll(w, dat);
call writeAll(w, dat);

Symbian
contacts

readAll:
requires

ReadUserData

implements

ownCloud
uploader

writeAll:
requires

NetworkServices

implements

inferred permissions

NetworkServices && ReadUserData

generates

1. program analysis for determining reachable invocations of
operations, and associated permissions
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permission resolution

configuration recipe

distribution = side-loaded,
certificate = self-signed,

platform = S60 3.0+
manifest writer

uses

Symbian policy

uses

inferred permissions

compiles

NetworkServices && ReadUserData

manifest

generates

CAPABILITIES NetworkServices ReadUserData

1. automated decision making on permission requests
▶ configuration recipes may require additional information
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vendor-specific permission inference

▶ infer required permissions from a program’s platform API use
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cross-platform permission inference

▶ infer required permissions from a program’s platform-agnostic
API use

▶ implementations encapsulate platform API use
▶ and: declare permissions for each implementation of said APIs
▶ and: program against said APIs in a language you can analyze to

determine API use

Can reuse the same API:
▶ for multiple platforms (if can implement)
▶ in multiple apps (if suitably general)
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favorable language characteristics

interface-based abstraction
▶ to support organizing cross-platform codebases

static analysis friendliness
▶ to allow for accurate inference
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adopting the approach

▶ adopt a favorable language, preferably
▶ coding conventions or explicit information about programmer

assumptions may help otherwise

in-source permission annotations
▶ as an extra-language feature (probably within comments)
▶ using any language-provided annotation support
▶ by extending the language
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our proof of concept: based on Magnolia

▶ general-purpose research programming language Magnolia

▶ http://magnolia-lang.org/

▶ its implementation provides the required language infrastructure
▶ permission management is just one application for Magnolia

▶ perhaps: address error handling in general (not just permission
errors)

▶ separate idea of partiality from concrete details of error
reporting—Bagge: Separating exceptional concerns (2012)

▶ abstract over different mechanisms—Hasu: Concrete error
handling mechanisms should be configurable (2012)
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Magnolia’s interface-based abstraction

▶ a Magnolia interface is declared as a concept
▶ each concept may have multiple implementations
▶ one implementation may satisfy multiple concepts
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Magnolia’s static analysis friendliness

▶ Magnolia avoids ”dynamism”
▶ no pointers, carefully controlled aliasing
▶ no runtime passing of code (e.g., no higher-order functions)
▶ abstract data types, not objects

▶ concrete type and operations known at compile time
▶ makes up for restrictions with extensive support for static

”wiring” of components
▶ Magnolia promotes use of semantically rich concepts

▶ a concept may specify (some) semantics as axioms
▶ an operation may specify use limitations as guards
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what & how to declare (static requirements)

▶ platform-specific required permission information (per operation,
per implementation)

▶ as a predicate expression—commonly need &&, sometimes ||
▶ for the Magnolia compiler to statically infer permission

requirements for a program
▶ e.g.,

alert RequiresPermission unless pre SNS_SERVICE()
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what & how to declare (dynamic behavior)

▶ platform-agnostic, abstract permission error names
▶ to allow for error-handling in portable code
▶ e.g., alert NoPermissionSocial <: NoPermissionCloud;

▶ mappings between platform-specific, concrete errors and error
names (per operation, per implementation)

▶ for the Magnolia compiler to implement the mapping
▶ e.g., alert NoPermissionSocial if post value == E_

PRIVILEGE_DENIED

Hasu, Bagge, Haveraaen (BLDL) Inferring Required Permissions



domain engineering an exporter:
data extraction and outputting
concept DataSrc = {

use World;
use DataCollection;

procedure readAll(upd sys : System, out coll : Coll);
};

concept DataTgt = {
use World;
use DataCollection;

procedure writeAll(upd sys : System, obs coll : Coll);
};
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runtime permission errors

implementation Permissions = {
alert NoPermission;

};
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platform-specific permissions
implementation HarmattanPermissions = {

use Permissions;
predicate TrackerReadAccess() = Permission; // Harmattan
predicate TrackerWriteAccess() = Permission; // Harmattan
predicate GrpMetadataUsers() = Permission; // Harmattan
// ...

};

implementation SymbianPermissions = {
use Permissions;
predicate ReadUserData() = Permission; // Symbian
// ...

};
Pardon the verbose syntax!
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Symbian-native contacts reader implementation
implementation SymbianNativeContactsSrc =

external C++ datasrc.SymbianContacts {
require type System;
require type Coll;
require SymbianPermissions;
procedure readAll(upd sys : System, out coll : Coll)

alert RequiresPermission unless pre ReadUserData()
alert NoPermission if leaving KErrPermissionDenied
/* more alerts ... */;

};

satisfaction SymbianNativeContactsIsDataSrc = {
use DataCollection; use World; use SymbianPermissions;

} with SymbianNativeContactsSrc
models DataSrc;
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same for Harmattan
implementation HarmattanQtContactsSrc =

external C++ datasrc.HarmattanContacts {
require type System;
require type Coll;
require HarmattanPermissions;
procedure readAll(upd sys : System, out coll : Coll)

alert RequiresPermission unless pre
TrackerReadAccess() && TrackerWriteAccess() &&
GrpMetadataUsers()

alert NoPermission unless pre haveQtContactsPerms()
/* more alerts ... */;

};

satisfaction HarmattanQtContactsIsDataSrc = {
use DataCollection; use World; use HarmattanPermissions;

} with HarmattanQtContactsSrc
models DataSrc;
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portable code, against platform-agnostic interfaces
implementation DefaultEngine = {

require DataSrc;
require DataTgt;

procedure exportData() {
var sys : System = initialState();
var dat : Coll;
on NoPermission in readAll

dat = emptyColl();
call readAll(sys, dat);
call writeAll(sys, dat);

}
};
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one program configuration
program SymbianContactsSaver = {

use DefaultEngine;
use DefaultWorld;
use DefaultDataCollection;
use SymbianNativeContactsSrc;
use CxxFileOut;

};

permission inference
▶ Magnolia compiler assembles a program—only relevant

implementations are included from codebase
▶ permission inference accounts for all operations that appear in

the program
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build integration

▶ compiler outputs a permission expression
▶ build tool writes a set of permissions into a manifest file

▶ in a format expected by vendor toolchain

examples
▶ (ACCESS_COARSE_LOCATION ∨ ACCESS_FINE_LOCATION) ∧

BLUETOOTH decide−−−→ {ACCESS_FINE_LOCATION, BLUETOOTH}, as
need not ask for both coarse and fine location on Android

▶ AllFiles ∧ ReadUserData decide−−−→ {ReadUserData}, as getting
AllFiles on Symbian requires manufacturer approval
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gain: permission management solution
▶ tools support for avoiding

runtime errors due to
permission
underdeclaration

▶ assuming correct and
complete annotations,
and grantable &
granted permissions
(toggleable in BB10
and iOS)

▶ language support for
handling runtime
permission errors portably
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cost: annotation effort

▶ may be able to amortize annotation cost over many projects and
configurations

▶ unlike when manually declared in a per-project-configuration
manifest file

▶ a way to store and perhaps share domain knowledge
▶ ”I know this implementation of this API requires these

permissions”
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conclusion

▶ permissions are a concern to smartphone app devs
▶ we proposed a solution for permission management

▶ requires no pre-existing permission tooling
▶ can be applied to cross-platform codebases
▶ no separately declaring permissions for each program

▶ we have tried out the solution
▶ by integrating permission support into Magnolia
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Anyxporter—permission management test app
https://github.com/bldl/anyxporter

▶ idea: different data sources,
different permissions—can
create variants

▶ cross-platform codebase,
organized as concepts

▶ currently:
▶ contact data export
▶ for Harmattan and

Symbian
▶ one ”Magnoliafied” build

configuration, with
permission inference
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Anyxporter—contact data export
<?xml version="1.0" encoding="UTF-8"?>
<Contacts> ...

<Contact> ...
<ContactDetail>

<DefinitionName>DisplayLabel</DefinitionName>
<Label>Tero Hasu</Label>

</ContactDetail>
<ContactDetail>

<DefinitionName>EmailAddress</DefinitionName>
<EmailAddress>tero.hasu@ii.uib.no</EmailAddress>

</ContactDetail>
<ContactDetail>

<DefinitionName>Guid</DefinitionName>
<Guid>000000003e7be123-00e18ae873575ee5-41</Guid>

</ContactDetail> ...
</Contact> ...

</Contacts>
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