
Don Sannella BLDL Opening 5-Nov-09

The design of a programming
language for provably correct
programs: success and failure

Don Sannella

Laboratory for Foundations of Computer Science
School of Informatics, University of Edinburgh

http://homepages.inf.ed.ac.uk/dts

Don Sannella BLDL Opening 5-Nov-09

Outline

The Standard ML functional programming language

Origins
Design and features
Semantics

The Extended ML framework for specification and
development of modular Standard ML software systems

An application of program proof: security certification

Don Sannella BLDL Opening 5-Nov-09

Standard ML: Origins

Meta-language of LCF theorem prover (Milner, 1978)

For programming proof search strategies
s : goal -> (goal list * (thm list -> thm))

Higher order functions for strategy-building combinators
Exception mechanism for backtracking
Thm as an abstract data type, with the inference rules

as its only constructors
Polymorphism
Interactive

Hope (Burstall, 1980)
Algebraic specification (Burstall/Goguen)

Don Sannella BLDL Opening 5-Nov-09

Standard ML: Origins

Meta-language of LCF theorem prover (Milner, 1978)

For programming proof search strategies
Higher order functions for strategy-building combinators

s : goal -> (goal list * (thm list -> thm))

Exception mechanism for backtracking
Thm as an abstract data type, with the inference rules

as its only constructors
Polymorphism
Interactive

Hope (Burstall, 1980)
Algebraic specification (Burstall/Goguen)

Don Sannella BLDL Opening 5-Nov-09

Standard ML: Origins

Meta-language of LCF theorem prover (Milner, 1978)

For programming proof search strategies
Higher order functions for strategy-building combinators
Exception mechanism for backtracking

REPEAT (x ORELSE y) THEN z

Thm as an abstract data type, with the inference rules
as its only constructors
Polymorphism
Interactive

Hope (Burstall, 1980)
Algebraic specification (Burstall/Goguen)

Don Sannella BLDL Opening 5-Nov-09

Standard ML: Origins

Meta-language of LCF theorem prover (Milner, 1978)

For programming proof search strategies
Higher order functions for strategy-building combinators
Exception mechanism for backtracking
Thm as an abstract data type, with the inference rules

as its only constructors
MP : thm * thm -> thm

Polymorphism
Interactive

Hope (Burstall, 1980)
Algebraic specification (Burstall/Goguen)

Don Sannella BLDL Opening 5-Nov-09

Standard ML: Origins

Meta-language of LCF theorem prover (Milner, 1978)

For programming proof search strategies
Higher order functions for strategy-building combinators
Exception mechanism for backtracking
Thm as an abstract data type, with the inference rules

as its only constructors
Polymorphism

reverse : α list -> α list
Interactive

Hope (Burstall, 1980)
Algebraic specification (Burstall/Goguen)

Don Sannella BLDL Opening 5-Nov-09

Standard ML: Origins

Meta-language of LCF theorem prover (Milner, 1978)

Hope (Burstall, 1980)

datatype α tree = empty
| node of α tree * α * α tree

fun flatten empty = []
| flatten(node(t1,x,t2)) =

(flatten t1) @ (x :: (flatten t2))

Algebraic specification (Burstall/Goguen)

Don Sannella BLDL Opening 5-Nov-09

Standard ML: Origins

Meta-language of LCF theorem prover (Milner, 1978)

Hope (Burstall, 1980)

Algebraic specification (Burstall/Goguen)

Parameterised modules
Interfaces and module bodies are separate
Pushout-style application
Stratification between code level and module level

Don Sannella BLDL Opening 5-Nov-09

Standard ML: Design and features

Design by committee with strong leadership (1983-1987)
Mainly Edinburgh, plus Dave MacQueen
Led by Robin Milner

Core language

Module language

Don Sannella BLDL Opening 5-Nov-09

Standard ML: Design and features

Design by committee with strong leadership (1983-1987)

Core language
ML’s features
Hope’s algebraic data types
Cardelli’s labelled records
generalised exceptions
generalised references
call-by-value

Module language

Don Sannella BLDL Opening 5-Nov-09

Standard ML: Design and features

Design by committee with strong leadership (1983-1987)

Core language

Module language (Dave MacQueen)
Explicit interfaces (“signatures”)
Software components (“structures”)
Generic components (“functors”)
Shared sub-components with explicit sharing

declarations

Don Sannella BLDL Opening 5-Nov-09

Standard ML: Language definition (1990)

Syntax – 21 pages
full “bare” syntax in 2.5 pages

Static semantics (type rules) – 30 pages

Dynamic semantics (evaluation rules) – 17 pages

Commentary (1991)

Don Sannella BLDL Opening 5-Nov-09

Standard ML: Language definition (1990)

Syntax – 21 pages

Static semantics (type rules) – 30 pages

Dynamic semantics (evaluation rules) – 17 pages

Commentary (1991)

C├ exp : τ’ → τ C├ exp’ : τ’
C├ exp exp’ : τ

Don Sannella BLDL Opening 5-Nov-09

Standard ML: Language definition (1990)

Syntax – 21 pages

Static semantics (type rules) – 30 pages

Dynamic semantics (evaluation rules) – 17 pages

Commentary (1991)

E├ dec ► E’ E + E’├ exp ► v
E├ let dec in exp end ► v

Don Sannella BLDL Opening 5-Nov-09

Standard ML: Language definition (1990)

Syntax – 21 pages

Static semantics (type rules) – 30 pages

Dynamic semantics (evaluation rules) – 17 pages

Commentary (1991)
Explanation of the semantics
Theorems about the language, e.g. deterministic

evaluation, type soundness, existence of principal types

Don Sannella BLDL Opening 5-Nov-09

Outline

The Standard ML functional programming language

The Extended ML framework for specification and
development of modular Standard ML software systems

Motivation
Design
Theory
Semantics
Proof
Tools
Failure
Post mortem

An application of program proof: security certification

Don Sannella BLDL Opening 5-Nov-09

Extended ML: Motivation (1985)

Pure functional programming allows straightforward proofs
of properties because of referential transparency
Equational reasoning
Structural induction
Standard ML is not pure,

but almost

Don Sannella BLDL Opening 5-Nov-09

Extended ML: Motivation (1985)

Pure functional programming allows straightforward proofs
of properties because of referential transparency
Algebraic specification theory (Sannella/Tarlecki et al)
algebraic models
axiomatic specifications
specification structure
proof of consequences
stepwise refinement
information hiding
parameterisation
behavioural equivalence
independence from logical system

Don Sannella BLDL Opening 5-Nov-09

Extended ML: Motivation (1985)

Pure functional programming allows straightforward proofs of
properties because of referential transparency
Algebraic specification theory (Sannella/Tarlecki et al)
Standard ML language definition provides a basis for
establishing soundness

Don Sannella BLDL Opening 5-Nov-09

Extended ML: Design (1985)

Minimal extension of Standard ML
Axioms in first-order logic with equality
Placeholder for expressions and types that haven’t

been written yet

Don Sannella BLDL Opening 5-Nov-09

Extended ML: Design (1985)

Minimal extension of Standard ML
A “wide spectrum” language
Covering specifications, programs, and intermediate

stages of development

Don Sannella BLDL Opening 5-Nov-09

Extended ML: Design (1985)

Minimal extension of Standard ML
A “wide spectrum” language
Simple and intuitive for ML programmers
Leave out references: too hard
Otherwise stick with full Standard ML

Don Sannella BLDL Opening 5-Nov-09

Extended ML: Design (1985)

Axioms are just boolean expressions containing extra
constants
forall x:t => expr
exists x:t => expr
expr == expr’
expr terminates
expr raises exn

Don Sannella BLDL Opening 5-Nov-09

Extended ML: Design (1986-1990)

Axioms are just boolean expressions containing extra
constants
Hard problem: interactions between features
polymorphism
quantification
equality
abstraction boundaries
exceptions and non-termination

Don Sannella BLDL Opening 5-Nov-09

Extended ML: Design (1986-1990)

Axioms are just boolean expressions containing extra
constants
Hard problem: interactions between features
Looked for solution that is natural for ML programmers
Example: quantification over a polymorphic type
forall (x,xs) => [x]@xs == xs@[x]

... looks like it should be false
... but it is polymorphic – with types we have
forall (x:α,xs:α list) => [x]@xs == xs@[x]
true if α is unit, false otherwise!
... so it is taken to have no meaning
forall xs => exists ys => xs@ys == ys@xs

is true, because y=[] satisfies it

Don Sannella BLDL Opening 5-Nov-09

Extended ML: Design (1986-1990)

Axioms are just boolean expressions containing extra
constants
Hard problem: interactions between features
Looked for solution that is natural for ML programmers
Example: quantification over a polymorphic type
Easy solution: require explicit quantification over type

variables
But ML has implicit polymorphism!

Don Sannella BLDL Opening 5-Nov-09

Extended ML: Theory (1985-1995)

Lots of very interesting problems to do with modules
Methodology for formal development of modular software
systems by stepwise refinement and decomposition
Theory is independent of language used for axioms and
language used for coding “in the small”
Experiments with Prolog
Experiments with knowledge representation language

Don Sannella BLDL Opening 5-Nov-09

Extended ML: Theory (1985-1995)

Lots of very interesting problems to do with modules
Methodology for formal development of modular software
systems by stepwise refinement and decomposition
Theory is independent of language used for axioms and
language used for coding “in the small”
Drove development of theory of algebraic specification
behavioural equivalence
stable constructions
parameterisation
implementation of specifications
institution-independent language definitions

Don Sannella BLDL Opening 5-Nov-09

Extended ML: Theory (1985-1995)

Lots of very interesting problems to do with modules
Methodology for formal development of modular software
systems by stepwise refinement and decomposition
Theory is independent of language used for axioms and
language used for coding “in the small”
Drove development of theory of algebraic specification
Very productive synergy with algebraic specification work

Don Sannella BLDL Opening 5-Nov-09

Extended ML: Semantics (1992-1996)

Determined to build on top of Standard ML semantics
Static semantics
Dynamic semantics
Verification semantics
Dependencies more complex than before

Modules
static

semantics

Core
static

semantics

Core
dynamic

semantics

Modules
dynamic

semantics

Don Sannella BLDL Opening 5-Nov-09

Extended ML: Semantics (1992-1996)

Determined to build on top of Standard ML semantics
Static semantics
Dynamic semantics
Verification semantics
Dependencies more complex than before

Modules
static

semantics

Core
static

semantics

Core
verification
semantics

Core
dynamic

semantics

Modules
dynamic

semantics

Modules
verification
semantics

Don Sannella BLDL Opening 5-Nov-09

Extended ML: Semantics (1992-1996)

Determined to build on top of Standard ML semantics
Static semantics
Dynamic semantics
Verification semantics
Dependencies more complex than before
Result was 140 pages
Found some errors in the Standard ML semantics

Don Sannella BLDL Opening 5-Nov-09

Extended ML: Semantics (1992-1996)

Determined to build on top of Standard ML semantics
More hard problems
Example: domain of quantification for function types

Don Sannella BLDL Opening 5-Nov-09

Extended ML: Semantics (1992-1996)

Determined to build on top of Standard ML semantics
More hard problems
Example: domain of quantification for function types
Set-theoretic functions?
Computable functions?
Function space in a model of parametric

polymorphism?
Expressible functions?
But what does “expressible” mean exactly?

Don Sannella BLDL Opening 5-Nov-09

Extended ML: Semantics (1992-1996)

Determined to build on top of Standard ML semantics
More hard problems
Example: domain of quantification for function types
Very complex rules

Don Sannella BLDL Opening 5-Nov-09

Extended ML: Semantics (1992-1996)

Determined to build on top of Standard ML semantics
More hard problems
Example: domain of quantification for function types
Very complex rules
New version of Standard ML language definition (1997)
... time to start again?

Don Sannella BLDL Opening 5-Nov-09

Extended ML: Proof (1994-1996)

For first-order monomorphic functions that always terminate
and never raise exceptions, everything is as expected
Otherwise, it’s a nightmare

Don Sannella BLDL Opening 5-Nov-09

Extended ML: Proof (1994-1996)

For first-order monomorphic functions that always terminate
and never raise exceptions, everything is as expected
Multi-valued logic because we used boolean expressions as
axioms, and boolean expressions can raise exceptions
So logical connectives sometimes behave strangely

Don Sannella BLDL Opening 5-Nov-09

Extended ML: Proof (1994-1996)

For first-order monomorphic functions that always terminate
and never raise exceptions, everything is as expected
Multi-valued logic because we used boolean expressions as
axioms, and boolean expressions can raise exceptions
Reasoning about exceptions is intractable (Pitts/Stark 1993)
So equality isn’t even reflexive (expr == expr is not

always true)

Don Sannella BLDL Opening 5-Nov-09

Extended ML: Proof (1994-1996)

For first-order monomorphic functions that always terminate
and never raise exceptions, everything is as expected
Multi-valued logic because we used boolean expressions as
axioms, and boolean expressions can raise exceptions
Reasoning about exceptions is intractable (Pitts/Stark 1993)
Specifying higher-order functions is messy: functional
arguments typically need to be specified to always terminate
and never raise exceptions
Likewise for higher-order functional arguments, provided

their functional arguments do so

Don Sannella BLDL Opening 5-Nov-09

Extended ML: Proof (1994-1996)

For first-order monomorphic functions that always terminate
and never raise exceptions, everything is as expected
Multi-valued logic because we used boolean expressions as
axioms, and boolean expressions can raise exceptions
Reasoning about exceptions is intractable (Pitts/Stark 1993)
Specifying higher-order functions is messy: functional
arguments typically need to be specified to always terminate
and never raise exceptions
We gave up

Don Sannella BLDL Opening 5-Nov-09

Extended ML: Tools (1992-2001)

Parsers and typecheckers
Proof obligation generator (prototype)
Limited proof support by translation into PVS (prototype)

Don Sannella BLDL Opening 5-Nov-09

Extended ML: Failure

Very good for teaching formal methods to students who
know Standard ML already
Otherwise, not enough user interest
Specifications are too hard to write
Formal development of modular programs from

specifications is possible, but a lot of work
Proving correctness of single-threaded functional

programs is too much work for too little payoff
Proof is intractable

Don Sannella BLDL Opening 5-Nov-09

Extended ML: Post mortem

We were too ambitious
There are features of ML that are hard to handle in isolation
But nobody really knew that at the time

Don Sannella BLDL Opening 5-Nov-09

Extended ML: Post mortem

We were too ambitious
There are features of ML that are hard to handle in isolation
... and they are much harder to handle in combination
Doing it formally for a “real” language was very hard
But I still believe in that goal

Don Sannella BLDL Opening 5-Nov-09

Extended ML: Post mortem

We were too ambitious
There are features of ML that are hard to handle in isolation
... and they are much harder to handle in combination
Doing it formally for a “real” language was very hard
Doing design and semantics long before proof and tools
was a big mistake
Correctness of pure functional programs is not a problem in
practice

Don Sannella BLDL Opening 5-Nov-09

Extended ML: Alternatives

Start with a small subset, do semantics, proofs and tools for
that
Add a feature and iterate
Stop when the next iteration is too hard
Attractive starting point: Moggi’s computational lambda
calculus (1989)

Don Sannella BLDL Opening 5-Nov-09

Extended ML: Alternatives

Forget proofs, focus on specification-based testing
Testing as a useful approximation to proof
Sometimes it is even as good as proof
Axioms as an aid to programming productivity

Don Sannella BLDL Opening 5-Nov-09

Extended ML: Alternatives

Be much less ambitious about the kinds of properties to be
proved
Focus on properties that people care about
... and situations where having a proof of that property is
valuable
Security certification!

Don Sannella BLDL Opening 5-Nov-09

Outline

The Standard ML functional programming language

The Extended ML framework for specification and
development of modular Standard ML software systems

An application of program proof: security certification

Proof-carrying code
Evidence-based certification

Don Sannella BLDL Opening 5-Nov-09

In Microsoft I trust

Don Sannella BLDL Opening 5-Nov-09

Microsoft security bulletin MS01-017

Who should read this bulletin: All customers using Microsoft®
products.

Technical description: In mid-March 2001, VeriSign, Inc.,
advised Microsoft that on January 29 and 30, 2001, it issued two
VeriSign Class 3 code-signing digital certificates to an individual
who fraudulently claimed to be a Microsoft employee. …

Impact of vulnerability: Attacker could digitally sign code using
the name “Microsoft Corporation”.

Don Sannella BLDL Opening 5-Nov-09

Proof-carrying code (Necula, 1997)

PCC certifies code with a condensed formal proof of a desired
property.

 Checked by client before installation / execution
 Proofs may be hard to generate, but are easy to check
 Independent of trust networks: unforgeable, tamper-evident

A certifying compiler uses types and other high-level source
information to create the necessary proof to accompany machine
code.

Don Sannella BLDL Opening 5-Nov-09

PCC architecture

Compiled
code

Compiled
code

Safety
policy

Safety
proof

Safety
proof

RUN IT

OK?

Code producer Code consumer

Certifying
compiler

Proof
checker

Network

Source
program

Don Sannella BLDL Opening 5-Nov-09

Space Types (MRG project, 2005)

Types and annotations can be inferred using a separate linear
constraint solver, and proofs can be generated from type
derivations

let insert n l d =
match l with Nil -> Cons(n,Nil)@d

| Cons(h,t)@d’ -> if n <= h
then Cons(n,Cons(h,t)@d’)@d
else Cons(h,insert n t d)@d’

let sort l =
match l with Nil -> Nil

| Cons(h,t)@d -> insert h (sort t) d

insert: int * intlist * <> -> intlist
sort : intlist –> intlist

Don Sannella BLDL Opening 5-Nov-09

More generally: Evidence-based Security

PCC certifies code with a condensed formal proof of a desired
property.

 Checked by client before installation / execution
 Proofs may be hard to generate, but are easy to check
 Independent of trust networks: unforgeable, tamper-evident

Evidence-based security is about certifying code with checkable
evidence of a desired property.

Proof-carrying code is just one example.

Some forms of evidence provide weaker guarantees than proof.

Don Sannella BLDL Opening 5-Nov-09

Conclusion

Things are sometimes a lot harder than they appear

Doing theory and practice hand-in-hand is important for both

Times change and new applications can build on old work

This is a fruitful area for research and experimentation

	Slide Number 1
	Outline
	Standard ML: Origins
	Standard ML: Origins
	Standard ML: Origins
	Standard ML: Origins
	Standard ML: Origins
	Standard ML: Origins
	Standard ML: Origins
	Standard ML: Design and features
	Standard ML: Design and features
	Standard ML: Design and features
	Standard ML: Language definition (1990)
	Standard ML: Language definition (1990)
	Standard ML: Language definition (1990)
	Standard ML: Language definition (1990)
	Outline
	Extended ML: Motivation (1985)
	Extended ML: Motivation (1985)
	Extended ML: Motivation (1985)
	Extended ML: Design (1985)
	Extended ML: Design (1985)
	Extended ML: Design (1985)
	Extended ML: Design (1985)
	Extended ML: Design (1986-1990)
	Extended ML: Design (1986-1990)
	Extended ML: Design (1986-1990)
	Extended ML: Theory (1985-1995)
	Extended ML: Theory (1985-1995)
	Extended ML: Theory (1985-1995)
	Extended ML: Semantics (1992-1996)
	Extended ML: Semantics (1992-1996)
	Extended ML: Semantics (1992-1996)
	Extended ML: Semantics (1992-1996)
	Extended ML: Semantics (1992-1996)
	Extended ML: Semantics (1992-1996)
	Extended ML: Semantics (1992-1996)
	Extended ML: Proof (1994-1996)
	Extended ML: Proof (1994-1996)
	Extended ML: Proof (1994-1996)
	Extended ML: Proof (1994-1996)
	Extended ML: Proof (1994-1996)
	Extended ML: Tools (1992-2001)
	Extended ML: Failure
	Extended ML: Post mortem
	Extended ML: Post mortem
	Extended ML: Post mortem
	Extended ML: Alternatives
	Extended ML: Alternatives
	Extended ML: Alternatives
	Outline
	In Microsoft I trust
	Microsoft security bulletin MS01-017
	Proof-carrying code (Necula, 1997)
	PCC architecture
	Space Types (MRG project, 2005)
	More generally: Evidence-based Security
	Conclusion

