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Standard ML: Origins

Meta-language of LCF theorem prover (Milner, 1978)

For programming proof search strategies
s : goal -> (goal list * (thm list -> thm))

Higher order functions for strategy-building combinators
Exception mechanism for backtracking
Thm as an abstract data type, with the inference rules 

as its only constructors
Polymorphism
Interactive

Hope (Burstall, 1980)
Algebraic specification (Burstall/Goguen)



Don Sannella BLDL Opening 5-Nov-09

Standard ML: Origins

Meta-language of LCF theorem prover (Milner, 1978)

For programming proof search strategies
Higher order functions for strategy-building combinators

s : goal -> (goal list * (thm list -> thm))

Exception mechanism for backtracking
Thm as an abstract data type, with the inference rules 

as its only constructors
Polymorphism
Interactive

Hope (Burstall, 1980)
Algebraic specification (Burstall/Goguen)



Don Sannella BLDL Opening 5-Nov-09

Standard ML: Origins

Meta-language of LCF theorem prover (Milner, 1978)

For programming proof search strategies
Higher order functions for strategy-building combinators
Exception mechanism for backtracking

REPEAT (x ORELSE y) THEN z

Thm as an abstract data type, with the inference rules 
as its only constructors
Polymorphism
Interactive

Hope (Burstall, 1980)
Algebraic specification (Burstall/Goguen)
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Standard ML: Origins

Meta-language of LCF theorem prover (Milner, 1978)

For programming proof search strategies
Higher order functions for strategy-building combinators
Exception mechanism for backtracking
Thm as an abstract data type, with the inference rules 

as its only constructors
MP : thm * thm -> thm

Polymorphism
Interactive

Hope (Burstall, 1980)
Algebraic specification (Burstall/Goguen)



Don Sannella BLDL Opening 5-Nov-09

Standard ML: Origins

Meta-language of LCF theorem prover (Milner, 1978)

For programming proof search strategies
Higher order functions for strategy-building combinators
Exception mechanism for backtracking
Thm as an abstract data type, with the inference rules 

as its only constructors
Polymorphism

reverse : α list -> α list
Interactive

Hope (Burstall, 1980)
Algebraic specification (Burstall/Goguen)
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Standard ML: Origins

Meta-language of LCF theorem prover (Milner, 1978)

Hope (Burstall, 1980)

datatype α tree = empty
| node of α tree * α * α tree

fun flatten empty = []
| flatten(node(t1,x,t2)) =

(flatten t1) @ (x :: (flatten t2))

Algebraic specification (Burstall/Goguen)
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Standard ML: Origins

Meta-language of LCF theorem prover (Milner, 1978)

Hope (Burstall, 1980)

Algebraic specification (Burstall/Goguen)

Parameterised modules
Interfaces and module bodies are separate
Pushout-style application
Stratification between code level and module level
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Standard ML: Design and features

Design by committee with strong leadership (1983-1987)
Mainly Edinburgh, plus Dave MacQueen
Led by Robin Milner

Core language

Module language
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Standard ML: Design and features

Design by committee with strong leadership (1983-1987)

Core language
ML’s features
Hope’s algebraic data types
Cardelli’s labelled records
generalised exceptions
generalised references
call-by-value

Module language
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Standard ML: Design and features

Design by committee with strong leadership (1983-1987)

Core language

Module language (Dave MacQueen)
Explicit interfaces (“signatures”)
Software components (“structures”)
Generic components (“functors”)
Shared sub-components with explicit sharing 

declarations
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Standard ML: Language definition (1990)

Syntax – 21 pages
full “bare” syntax in 2.5 pages

Static semantics (type rules) – 30 pages

Dynamic semantics (evaluation rules) – 17 pages

Commentary (1991)
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Standard ML: Language definition (1990)

Syntax – 21 pages

Static semantics (type rules) – 30 pages

Dynamic semantics (evaluation rules) – 17 pages

Commentary (1991)

C├ exp : τ’ → τ C├ exp’ : τ’
C├ exp  exp’ : τ



Don Sannella BLDL Opening 5-Nov-09

Standard ML: Language definition (1990)

Syntax – 21 pages

Static semantics (type rules) – 30 pages

Dynamic semantics (evaluation rules) – 17 pages

Commentary (1991)

E├ dec ► E’      E + E’├ exp ► v
E├ let dec in exp end ► v
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Standard ML: Language definition (1990)

Syntax – 21 pages

Static semantics (type rules) – 30 pages

Dynamic semantics (evaluation rules) – 17 pages

Commentary (1991)
Explanation of the semantics
Theorems about the language, e.g. deterministic 

evaluation, type soundness, existence of principal types
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Outline

The Standard ML functional programming language

The Extended ML framework for specification and 
development of modular Standard ML software systems

Motivation
Design
Theory
Semantics
Proof
Tools
Failure
Post mortem

An application of program proof: security certification
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Extended ML: Motivation (1985)

Pure functional programming allows straightforward proofs 
of properties because of referential transparency
Equational reasoning
Structural induction
Standard ML is not pure,

but almost
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Extended ML: Motivation (1985)

Pure functional programming allows straightforward proofs 
of properties because of referential transparency
Algebraic specification theory (Sannella/Tarlecki et al)
algebraic models
axiomatic specifications
specification structure
proof of consequences
stepwise refinement
information hiding
parameterisation
behavioural equivalence
independence from logical system
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Extended ML: Motivation (1985)

Pure functional programming allows straightforward proofs of 
properties because of referential transparency
Algebraic specification theory (Sannella/Tarlecki et al)
Standard ML language definition provides a basis for 
establishing soundness
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Extended ML: Design (1985)

Minimal extension of Standard ML
Axioms in first-order logic with equality
Placeholder for expressions and types that haven’t 

been written yet
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Extended ML: Design (1985)

Minimal extension of Standard ML
A “wide spectrum” language
Covering specifications, programs, and intermediate 

stages of development
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Extended ML: Design (1985)

Minimal extension of Standard ML
A “wide spectrum” language
Simple and intuitive for ML programmers
Leave out references: too hard
Otherwise stick with full Standard ML
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Extended ML: Design (1985)

Axioms are just boolean expressions containing extra 
constants
forall x:t => expr
exists x:t => expr
expr == expr’
expr terminates
expr raises exn
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Extended ML: Design (1986-1990)

Axioms are just boolean expressions containing extra 
constants
Hard problem: interactions between features
polymorphism
quantification
equality
abstraction boundaries
exceptions and non-termination
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Extended ML: Design (1986-1990)

Axioms are just boolean expressions containing extra  
constants
Hard problem: interactions between features
Looked for solution that is natural for ML programmers
Example: quantification over a polymorphic type
forall (x,xs) => [x]@xs == xs@[x]

... looks like it should be false
... but it is polymorphic – with types we have
forall (x:α,xs:α list) => [x]@xs == xs@[x]
true if α is unit, false otherwise!
... so it is taken to have no meaning
forall xs => exists ys => xs@ys == ys@xs

is true, because y=[] satisfies it
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Extended ML: Design (1986-1990)

Axioms are just boolean expressions containing extra  
constants
Hard problem: interactions between features
Looked for solution that is natural for ML programmers
Example: quantification over a polymorphic type
Easy solution: require explicit quantification over type 

variables
But ML has implicit polymorphism!
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Extended ML: Theory (1985-1995)

Lots of very interesting problems to do with modules
Methodology for formal development of modular software 
systems by stepwise refinement and decomposition
Theory is independent of language used for axioms and 
language used for coding “in the small”
Experiments with Prolog
Experiments with knowledge representation language
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Extended ML: Theory (1985-1995)

Lots of very interesting problems to do with modules
Methodology for formal development of modular software 
systems by stepwise refinement and decomposition
Theory is independent of language used for axioms and 
language used for coding “in the small”
Drove development of theory of algebraic specification
behavioural equivalence
stable constructions
parameterisation
implementation of specifications
institution-independent language definitions



Don Sannella BLDL Opening 5-Nov-09

Extended ML: Theory (1985-1995)

Lots of very interesting problems to do with modules
Methodology for formal development of modular software 
systems by stepwise refinement and decomposition
Theory is independent of language used for axioms and 
language used for coding “in the small” 
Drove development of theory of  algebraic specification
Very productive synergy with algebraic specification work
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Extended ML: Semantics (1992-1996)

Determined to build on top of Standard ML semantics
Static semantics
Dynamic semantics
Verification semantics
Dependencies more complex than before

Modules
static

semantics

Core
static

semantics

Core
dynamic

semantics

Modules
dynamic

semantics
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Determined to build on top of Standard ML semantics
Static semantics
Dynamic semantics
Verification semantics
Dependencies more complex than before

Modules
static

semantics

Core
static

semantics

Core
verification
semantics

Core
dynamic
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Modules
dynamic
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Extended ML: Semantics (1992-1996)

Determined to build on top of Standard ML semantics
Static semantics
Dynamic semantics
Verification semantics
Dependencies more complex than before
Result was 140 pages
Found some errors in the Standard ML semantics
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Extended ML: Semantics (1992-1996)

Determined to build on top of Standard ML semantics
More hard problems
Example: domain of quantification for function types
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Extended ML: Semantics (1992-1996)

Determined to build on top of Standard ML semantics
More hard problems
Example: domain of quantification for function types
Set-theoretic functions?
Computable functions?
Function space in a model of parametric 

polymorphism?
Expressible functions?
But what does “expressible” mean exactly?
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Extended ML: Semantics (1992-1996)

Determined to build on top of Standard ML semantics
More hard problems
Example: domain of quantification for function types
Very complex rules
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Extended ML: Semantics (1992-1996)

Determined to build on top of Standard ML semantics
More hard problems
Example: domain of quantification for function types
Very complex rules
New version of Standard ML language definition (1997)
... time to start again?
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Extended ML: Proof (1994-1996)

For first-order monomorphic functions that always terminate 
and never raise exceptions, everything is as expected
Otherwise, it’s a nightmare
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Extended ML: Proof (1994-1996)

For first-order monomorphic functions that always terminate 
and never raise exceptions, everything is as expected
Multi-valued logic because we used boolean expressions as 
axioms, and boolean expressions can raise exceptions
So logical connectives sometimes behave strangely
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Extended ML: Proof (1994-1996)

For first-order monomorphic functions that always terminate 
and never raise exceptions, everything is as expected
Multi-valued logic because we used boolean expressions as 
axioms, and boolean expressions can raise exceptions
Reasoning about exceptions is intractable (Pitts/Stark 1993)
So equality isn’t even reflexive (expr == expr is not 

always true)
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Extended ML: Proof (1994-1996)

For first-order monomorphic functions that always terminate 
and never raise exceptions, everything is as expected
Multi-valued logic because we used boolean expressions as 
axioms, and boolean expressions can raise exceptions
Reasoning about exceptions is intractable (Pitts/Stark 1993)
Specifying higher-order functions is messy: functional 
arguments typically need to be specified to always terminate 
and never raise exceptions
Likewise for higher-order functional arguments, provided 

their functional arguments do so
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Extended ML: Proof (1994-1996)

For first-order monomorphic functions that always terminate 
and never raise exceptions, everything is as expected
Multi-valued logic because we used boolean expressions as 
axioms, and boolean expressions can raise exceptions
Reasoning about exceptions is intractable (Pitts/Stark 1993)
Specifying higher-order functions is messy: functional 
arguments typically need to be specified to always terminate 
and never raise exceptions
We gave up
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Extended ML: Tools (1992-2001)

Parsers and typecheckers
Proof obligation generator (prototype)
Limited proof support by translation into PVS (prototype)
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Extended ML: Failure

Very good for teaching formal methods to students who 
know Standard ML already
Otherwise, not enough user interest
Specifications are too hard to write
Formal development of modular programs from 

specifications is possible, but a lot of work
Proving correctness of single-threaded functional 

programs is too much work for too little payoff
Proof is intractable
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Extended ML: Post mortem

We were too ambitious
There are features of ML that are hard to handle in isolation
But nobody really knew that at the time
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Extended ML: Post mortem

We were too ambitious
There are features of ML that are hard to handle in isolation
... and they are much harder to handle in combination
Doing it formally for a “real” language was very hard
But I still believe in that goal
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Extended ML: Post mortem

We were too ambitious
There are features of ML that are hard to handle in isolation
... and they are much harder to handle in combination
Doing it formally for a “real” language was very hard
Doing design and semantics long before proof and tools 
was a big mistake
Correctness of pure functional programs is not a problem in 
practice
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Extended ML: Alternatives

Start with a small subset, do semantics, proofs and tools for 
that
Add a feature and iterate
Stop when the next iteration is too hard
Attractive starting point: Moggi’s computational lambda 
calculus (1989)



Don Sannella BLDL Opening 5-Nov-09

Extended ML: Alternatives

Forget proofs, focus on specification-based testing
Testing as a useful approximation to proof
Sometimes it is even as good as proof
Axioms as an aid to programming productivity 
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Extended ML: Alternatives

Be much less ambitious about the kinds of properties to be 
proved
Focus on properties that people care about
... and situations where having a proof of that property is 
valuable
Security certification!
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Outline

The Standard ML functional programming language

The Extended ML framework for specification and 
development of modular Standard ML software systems

An application of program proof: security certification

Proof-carrying code
Evidence-based certification



Don Sannella BLDL Opening 5-Nov-09

In Microsoft I trust
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Microsoft security bulletin MS01-017

Who should read this bulletin: All customers using Microsoft® 
products. 

Technical description: In mid-March 2001, VeriSign, Inc., 
advised Microsoft that on January 29 and 30, 2001, it issued two 
VeriSign Class 3 code-signing digital certificates to an individual 
who fraudulently claimed to be a Microsoft employee.  …

Impact of vulnerability: Attacker could digitally sign code using 
the name “Microsoft Corporation”. 
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Proof-carrying code (Necula, 1997)

PCC certifies code with a condensed formal proof of a desired 
property.

 Checked by client before installation / execution
 Proofs may be hard to generate, but are easy to check
 Independent of trust networks: unforgeable, tamper-evident

A certifying compiler uses types and other high-level source 
information to create the necessary proof to accompany machine 
code.
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PCC architecture

Compiled
code

Compiled
code

Safety
policy

Safety
proof

Safety
proof

RUN IT

OK?

Code producer Code consumer

Certifying 
compiler

Proof
checker

Network

Source
program
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Space Types (MRG project, 2005)

Types and annotations can be inferred using a separate linear 
constraint solver, and proofs can be generated from type 
derivations

let insert n l d =
match l with Nil -> Cons(n,Nil)@d

| Cons(h,t)@d’ -> if n <= h
then Cons(n,Cons(h,t)@d’)@d
else Cons(h,insert n t d)@d’

let sort l =
match l with Nil -> Nil

| Cons(h,t)@d -> insert h (sort t) d

insert: int * intlist * <> -> intlist
sort  : intlist –> intlist
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More generally: Evidence-based Security

PCC certifies code with a condensed formal proof of a desired 
property.

 Checked by client before installation / execution
 Proofs may be hard to generate, but are easy to check
 Independent of trust networks: unforgeable, tamper-evident

Evidence-based security is about certifying code with checkable 
evidence of a desired property.

Proof-carrying code is just one example.

Some forms of evidence provide weaker guarantees than proof.
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Conclusion

Things are sometimes a lot harder than they appear

Doing theory and practice hand-in-hand is important for both

Times change and new applications can build on old work

This is a fruitful area for research and experimentation
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