
Exploiting Dependencies
as Concepts for Parallel Programming

Eva Burrows, Magne Haveraaen

Bergen Language Design Laboratory (BLDL)

Department of Informatics, University of Bergen, Norway

Workshop on Concepts, Bergen, November 5, 2009

Eva Burrows ● Exploiting Dependencies as Concepts for Parallel Programming ● http://bldl.ii.uib.no

Programming Parallel Architectures

• Traditional: OpenMP and MPI
– Communication architecture ignored

• Architecture-aware programming
– Existing codes cannot be ported directly to new architectures
– New architectures come along with new programming

models: one for GPUs, one for Cell and so on.

• Hardware independent programming
– Map computations to new architectures without rewriting the

problem solving code
– Higher level abstractions needed

Eva Burrows ● Exploiting Dependencies as Concepts for Parallel Programming ● http://bldl.ii.uib.no

Bitonic Sort Dependency

Eva Burrows ● Exploiting Dependencies as Concepts for Parallel Programming ● http://bldl.ii.uib.no

Embedding BS DDA onto Various Hardware

Bitonic Sort DDA

... ...

GPU: NVIDIA's CUDA Hypercube

 MPI-code

Eva Burrows ● Exploiting Dependencies as Concepts for Parallel Programming ● http://bldl.ii.uib.no

DDA concept (API) definition in Magnolia

module DDA
imports Equivalence;

concept DDA<type P, type B> {
requires Substitutable<P>; requires Substitutable;

/** The signiture */
predicate rg (P p, B b);
function P rp (P p, B b) guard rg(p,b);
function B rb (P p, B b) guard rg(p,b);

predicate sg (P p, B b);
function P sp (P p, B b) guard sg(p,b);
function B sb (P p, B b) guard sg(p,b);

/** The axioms */
axiom Receives (P p, B b) {

assert sg(rp(p,b),rb(p,b));
assert sp(rp(p,b),rb(p,b)) <-> p;
assert sb(rp(p,b),rp(p,b)) <-> b;

}
axiom Supplies (P p, B b) {

assert rg(sp(p,b),sb(p,b));
assert rp(sp(p,b),sb(p,b)) <-> p;
assert rb(sp(p,b),sb(p,b)) <-> b;

}
}

Eva Burrows ● Exploiting Dependencies as Concepts for Parallel Programming ● http://bldl.ii.uib.no

DDA Concepts and Compilation Schemes

• Plain DDA concept
– Hashmap based implementation

• Time control, no space control

• DDA with space-time projections concept
– Sequential implementation

• Time and space (memory layout) control
– Parallel execution model using MPI

• Time and space (parallel distribution) control
• No communication structure control (limitation of MPI)

– CUDA / OpenCL execution model using threads
• Time and space (kernel/block/thread/memory) control
• Communication structure control

Eva Burrows ● Exploiting Dependencies as Concepts for Parallel Programming ● http://bldl.ii.uib.no

Run Times for DDA-based Bitonic Sort

0.25M 0.5M 1M 2M 4M 8M

0

5

10

15

20

25

30

35

40

45

50

AMD Athlon(tm)
64 X2 Dual
Core Processor
3800+
 NVIDIA
GeForce 9600
GT
 NVIDIA
GeForce GTS
250

0.25M 0.5M 1M 2M 4M 8M

0

5

10

15

20

25

30

35

40

45

50

DDA-based
Bitonic Sort
Classic Bitonic
Sort

a) b)

T
im

e
(s

e
c)

T
im

e
 (

se
c)

Elements (million)Elements (million)

DDA-concept implementations are portable across platforms.

Eva Burrows ● Exploiting Dependencies as Concepts for Parallel Programming ● http://bldl.ii.uib.no

DDAs as Concepts

• Application domain – compiler construction

• DDA concept – API for the user

• Predefined collection of concepts with associated
computational mechanism:
– CUDA-execution model
– MPI
– Hypercube
– FPGA,
– etc

• Portability

• User benefits from axiom-based testing tools.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

