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Programming Parallel Architectures

• Traditional: OpenMP and MPI
– Communication architecture ignored

• Architecture-aware programming
– Existing codes cannot be ported directly to new architectures
– New architectures come along with new programming 

models: one for GPUs, one for Cell and so on.

• Hardware independent programming
– Map computations to new architectures without rewriting the 

problem solving code
– Higher level abstractions needed
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Bitonic Sort Dependency
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Embedding BS DDA onto Various Hardware

Bitonic Sort DDA

... ...

GPU: NVIDIA's CUDA Hypercube

  MPI-code
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DDA concept (API) definition in Magnolia

module DDA
imports Equivalence;

concept DDA<type P, type B> {
requires Substitutable<P>; requires Substitutable<B>;

/** The signiture */
predicate rg (P p, B b);
function P rp (P p, B b) guard rg(p,b);
function B rb (P p, B b) guard rg(p,b);

predicate sg (P p, B b);
function P sp (P p, B b) guard sg(p,b);
function B sb (P p, B b) guard sg(p,b);

/** The axioms */
axiom Receives (P p, B b) {

assert sg(rp(p,b),rb(p,b));
assert sp(rp(p,b),rb(p,b)) <-> p;
assert sb(rp(p,b),rp(p,b)) <-> b;

}
axiom Supplies (P p, B b) {

assert rg(sp(p,b),sb(p,b));
assert rp(sp(p,b),sb(p,b)) <-> p;
assert rb(sp(p,b),sb(p,b)) <-> b;

}
}
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DDA Concepts and Compilation Schemes

• Plain DDA concept
– Hashmap based implementation

• Time control, no space control

• DDA with space-time projections concept
– Sequential implementation

• Time and space (memory layout) control
–  Parallel execution model using MPI

• Time and space (parallel distribution) control
• No communication structure control (limitation of MPI)

– CUDA / OpenCL execution model using threads
• Time and space (kernel/block/thread/memory) control
• Communication structure control
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Run Times for DDA-based Bitonic Sort
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DDA-concept implementations are portable across platforms.
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DDAs as Concepts

• Application domain – compiler construction

• DDA concept – API for the user

• Predefined collection of concepts with associated 
computational mechanism:
– CUDA-execution model
– MPI
– Hypercube
– FPGA, 
– etc

• Portability

• User benefits from axiom-based testing tools.
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