Domain Engineering with Concepts

Magne Haveraaen
\& Sophus Group

Bergen Language Design Laboratory (BLDL)
Department of Informatics, University of Bergen, Norway

Workshop on Concepts, Bergen, November 5, 2009

Domain Engineering

Turning concepts into types and operations

- What are the concepts of a domain
- What is the language we use to express these concepts
- What are the types and operations in this language
- What are the properties of the operations

Story from the trenches: PDE domain

Mathematicians talk about
Vector - 1-indexed array of reals
Matrix - 2-indexed array of reals
changeBasis: Matrix, Vector -> Vector
dot: Vector, Vector -> Real, $\operatorname{dot}(u, v)=u[0]^{\star} v[0]+\ldots+u[n-1]^{*} v[n-1]$

Me:
dot(u,changeBasis(M,v))
$\operatorname{dot}($ changeBasis(M,u),changeBasis(M,v)) = changeBasis(M,u)[0]*changeBasis(M,v)[0]+...+...

Story from the trenches: PDE domain

Mathematicians think
Vector<Basis> - 1-indexed array of reals in given Basis BasisMap<F,T>-2-indexed array of reals from F to T changeBasis: BasisMap<F,T>, Vector<F> -> Vector<T> dot: Vector<Basis>, Vector<Basis> -> Real

Axiom:
$\operatorname{dot}(u, v)==\operatorname{dot}($ changeBasis($M, u)$,changeBasis($M, V)$)

Sophus Concepts

Time integration
PDE equation
Tensor abstractions with Basis
Representation: multi-indexed arrays of reals
Scalar fields
Finite Difference, Finite Element, Finite Volume, ... Representation: huge multi-indexed arrays of reals

Multi-indexed arrays of reals with collective operations
Sequential layout in memory: per element operations
Parallel distribution: element operations in parallel

Some Sophus Experience

