
Logics for Specification

Markus Roggenbach, Swansea (Wales)

Bergen, November 2009

CSP & CASL 2

CSP & CASL

Modelling Concurrent Systems: CSP

• Established formalism to describe concurrent systems.

• Still research on foundations; applications in industry,

e.g. Train Controllers, Avionics, Security Protocols.

Roscoe. The Theory and Practice of Concurrency. Prentice Hall, 1998.

Abdallah, Jones, Sanders (eds). CSP: The First 25 Years. Springer 2005.

M.Roggenbach: Logics for Specification; Bergen, November 2009

CSP & CASL 3

Modelling Data: CASL

• CASL = Common Algebraic Specification Language.

• De-facto standard in algebraic specification

Mosses (ed). CASL Reference Manual, Springer 2004.

Bidoit, Mosses. CASL User Manual, Springer 2004.

M.Roggenbach: Logics for Specification; Bergen, November 2009

A C++ template 4

A C++ template

Template:
template <typename T>
T square(T x) { return x * x; }

Instantiation:
square <int>

Checks:

• Extract the signature required for T: “type T, * ”.

• Check that <int> offers this signature.

M.Roggenbach: Logics for Specification; Bergen, November 2009

The same in the specification language CASL 5

The same in the specification language CASL

Generic specification:
spec MyTemplate [sort T op ∗ : T × T → T] =

op square : T × T → T
• ∀ x, y : T • square(x, y) = x ∗ y

Instantiation: MyTemplate [int]

Checks:
• int is a refinement of

sort T op ∗ : T × T → T

(in our example: boils down to a check on signatures only)

M.Roggenbach: Logics for Specification; Bergen, November 2009

Underlying Framework: Institutions 6

Underlying Framework: Institutions

Goguen, Burstall. Institutions: Abstract model theory for specification

and programming. 1992.

Institutions speak about

• Signatures (e.g.: T is a type, ∗ is an operation)

• Models (e.g.: interpretation of type T by set Z)

• Formulae (e.g.: square(x, y) = x ∗ y

• Satisfaction (e.g.: Z |= x ∗ y = y ∗ x)

M.Roggenbach: Logics for Specification; Bergen, November 2009

7

C++ Concepts with threads?

M.Roggenbach: Logics for Specification; Bergen, November 2009

7

C++ Concepts with threads? – A CSP study

M.Roggenbach: Logics for Specification; Bergen, November 2009

7

C++ Concepts with threads? – A CSP study

Generic specification:
spec MyTemplate

[call1 -> call2 -> SKIP [] call2 -> call1 -> SKIP [T= P]
= P; call3 -> Skip

Instantiation: MyTemplate [call1 -> SKIP ||| call2 -> SKIP]

M.Roggenbach: Logics for Specification; Bergen, November 2009

7

C++ Concepts with threads? – A CSP study

Generic specification:
spec MyTemplate

[call1 -> call2 -> SKIP [] call2 -> call1 -> SKIP [T= P]
= P; call3 -> Skip

Instantiation: MyTemplate [call1 -> SKIP ||| call2 -> SKIP]

Check:

• call1 -> SKIP ||| call2 -> SKIP

is a refinement of

call1 -> call2 -> SKIP [] call2 -> call1 -> SKIP

M.Roggenbach: Logics for Specification; Bergen, November 2009

Questions 8

Questions

• What properties of threads make sense for C++ Concepts?

• How do we formulate properties of threads?

• What is a useful “refinement” on C++ threads?

M.Roggenbach: Logics for Specification; Bergen, November 2009

Questions 8

Questions

• What properties of threads make sense for C++ Concepts?

• How do we formulate properties of threads?

• What is a useful “refinement” on C++ threads?

Suggestion:
A “process” algebra of C++ threads

– formulated as an institution.

M.Roggenbach: Logics for Specification; Bergen, November 2009

A testing scenario 9

A testing scenario

Tests on various levels:

Refinement and Tests:

M.Roggenbach: Logics for Specification; Bergen, November 2009

Links to publications 10

Links to publications

• Mossakowski, Roggenbach: Structured CSP - A Process Algebra as
an Institution. 2007.

• Mossakowski, Roggenbach: An institution for processes and data.

2008.

• Kahsai, Roggenbach, Schlingloff: Specification-based testing for
refinement. 2007.

• Kahsai, Roggenbach, Schlingloff: Specification-based testing for
Software Product Lines. 2008.

M.Roggenbach: Logics for Specification; Bergen, November 2009

