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Introduction Functions in C++ Evaluation

Function Types in Programming

I Functional programmers are used to function types

I For instance in Haskell: A -> B

I Imperative languages lack native support for function types

I However, they are the base of generic programming

I Higher-order functions, for instance, require function types

I We investigate function types in C++, as this is the imperative
language with the best support for generic programming
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Comparing Function Types in C++

I How do the existing implementations compare?

I Surprisingly, it was not clear at all how they compare

I In many situations an evaluation is useful

I What about a function concept? How does it compare to other
approaches?

I Measure it! Evaluate it!

no optimization optimization level 3 (-O3)

FPtr - -

OO 59.41 43.05
Boost 284.25 123.74
FC++ 88.63 72.86
Concept 11.60 1.00
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Function Pointers

I Small template class, directly supported

I Internally, a function pointer is stored as a member

I Application operator resolves the function pointer at runtime
(overhead!)
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Object-Oriented Programming

I Function is an abstract base class

I One class for every concrete function; inherits from the abstract
base class, dynamic binding

I Application operator resolves virtual call at runtime (overhead!)
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Libraries

I Several libraries provide function datatypes

I Most prominent: Boost

I In addition, we picked the FC++ library

I How to use: create an instance of a library object and pass along
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Concepts

I The concept models a static interface
I One class for every concrete function, declared as a model of the

function class with a concept_map; static binding
I Application operator resolved in the concept_map at compile time

(no overhead!)

Daniel Lincke and Sibylle Schupp PIK, TU Hamburg

The Function Concept



Introduction Functions in C++ Evaluation

The Function Concept

concept Concept_Function<class F> {
typename Domain;
typename Codomain;

Codomain operator()(F&, Domain);
};

template<class T>
concept_map Concept_Function<Increment<T> > {

typedef T Domain; ++
typedef T Codomain;

}
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Function Application: A measurement

Evaluation

I Function application is the basic operation for functions

I Important to have no overhead for the application operator

I A simple test: repeated function application. Results:

no optimization optimization level 3 (-O3)

Fptr 5.37 2.56

OO 3.84 1.06

Boost 8.91 8.59

FC++ 12.42 5.24

Concept 3.73 1.00
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Function Application: A Measurement

Some interpretations:

I As expected: the concept has no overhead

I The function class for the object-oriented case is as fast as the
function object

I Function pointer wrappers suffer from pointer indirection costs

I Library datatypes use a complicated machinery with pointer
indirections and virtual calls
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Higher-order Functions: Performance

I Higher-order functions are a main reason for introducing function
datatypes

I Function application for higher-order functions should be efficient

I A simple test: repeated higher-order function application. Results:

no optimization optimization level 3 (-O3)

Fptr 17.18 5.45

OO 13.82 6.18

Boost 25.19 16.76

FC++ 34.50 10.55

Concept 12.92 1.00
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Higher-order Functions: Performance

Some interpretations:

I As expected: concept performs best

I The object-oriented solution resolves the virtual application
operator call, which leads to an overhead

I Function pointer wrappers and library datatypes: as before
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Other Evaluation Criteria

I We are looking further: operations on function types like
composition, currying are needed

I Questions: can these operations be implemented at all?

I And if so, can they be implemented efficiently?

I Interestingly, it turns out that not all of them are expressive enough

I A simple function pointer wrapper, for instance, cannot support
composition
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Example: Partial Application

I We also tested the performance of function application for curried,
partially applied functions

I Results show surprisingly big differences in terms of performance:

no optimization optimization level 3 (-O3)

Fptr - -

OO 59.41 43.05

Boost 284.25 123.74

FC++ 88.63 72.86

Concept 11.60 1.00

I Once again, the function concept performs best
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Type Declarations

I The function concept performs very good in all performance
evaluations

I So, where is the rub?

I The function concept leads to difficult type declarations, compared
with other solutions:

boost::function<B, A> f1 = ...;
boost::function<C, B> f2 = ...;
boost::function<C, A> f1_f2 = boost_compose(f1,f2);
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Type Declarations

I With function objects and concepts:

Test_Function1 f1; // f1 : A->B
Test_Function2 f2; // f2 : B->C
Composed_Function<Test_Function1,

Test_Function2>
f1_f2 = concept_compose(f1,f2);

I Hard to understand for nested composition / currying
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Evaluation Summary

Feature Fptr OO FC++ Boost Concept

Application operator + − − − +
Higher-order functions + − − − +
Function composition − + + + +
Function comp., efficiency − − − − +
Partial application − + + + +
Partial appl., efficiency − − − − +
Pretty function types + + + + −
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