
Potsdam Institute for Climate Impact Research PIK
Member of the Leibniz Association

The Function Concept
An empirical study

Daniel Lincke (Potsdam Institute for Climate Impact Research)
and

Sibylle Schupp (Hamburg University of Technology)

Nov. 5, 2009



Introduction Functions in C++ Evaluation

Function Types in Programming

I Functional programmers are used to function types

I For instance in Haskell: A -> B

I Imperative languages lack native support for function types

I However, they are the base of generic programming

I Higher-order functions, for instance, require function types

I We investigate function types in C++, as this is the imperative
language with the best support for generic programming

Daniel Lincke and Sibylle Schupp PIK, TU Hamburg

The Function Concept



Introduction Functions in C++ Evaluation

Comparing Function Types in C++

I How do the existing implementations compare?

I Surprisingly, it was not clear at all how they compare

I In many situations an evaluation is useful

I What about a function concept? How does it compare to other
approaches?

I Measure it! Evaluate it!

no optimization optimization level 3 (-O3)

FPtr - -

OO 59.41 43.05
Boost 284.25 123.74
FC++ 88.63 72.86
Concept 11.60 1.00

Daniel Lincke and Sibylle Schupp PIK, TU Hamburg

The Function Concept



Introduction Functions in C++ Evaluation

Function Pointers

I Small template class, directly supported

I Internally, a function pointer is stored as a member

I Application operator resolves the function pointer at runtime
(overhead!)

Daniel Lincke and Sibylle Schupp PIK, TU Hamburg

The Function Concept



Introduction Functions in C++ Evaluation

Object-Oriented Programming

I Function is an abstract base class

I One class for every concrete function; inherits from the abstract
base class, dynamic binding

I Application operator resolves virtual call at runtime (overhead!)

Daniel Lincke and Sibylle Schupp PIK, TU Hamburg

The Function Concept



Introduction Functions in C++ Evaluation

Libraries

I Several libraries provide function datatypes

I Most prominent: Boost

I In addition, we picked the FC++ library

I How to use: create an instance of a library object and pass along

Daniel Lincke and Sibylle Schupp PIK, TU Hamburg

The Function Concept



Introduction Functions in C++ Evaluation

Concepts

I The concept models a static interface
I One class for every concrete function, declared as a model of the

function class with a concept_map; static binding
I Application operator resolved in the concept_map at compile time

(no overhead!)

Daniel Lincke and Sibylle Schupp PIK, TU Hamburg

The Function Concept



Introduction Functions in C++ Evaluation

The Function Concept

concept Concept_Function<class F> {
typename Domain;
typename Codomain;

Codomain operator()(F&, Domain);
};

template<class T>
concept_map Concept_Function<Increment<T> > {

typedef T Domain; ++
typedef T Codomain;

}

Daniel Lincke and Sibylle Schupp PIK, TU Hamburg

The Function Concept



Introduction Functions in C++ Evaluation

Function Application: A measurement

Evaluation

I Function application is the basic operation for functions

I Important to have no overhead for the application operator

I A simple test: repeated function application. Results:

no optimization optimization level 3 (-O3)

Fptr 5.37 2.56

OO 3.84 1.06

Boost 8.91 8.59

FC++ 12.42 5.24

Concept 3.73 1.00

Daniel Lincke and Sibylle Schupp PIK, TU Hamburg

The Function Concept



Introduction Functions in C++ Evaluation

Function Application: A Measurement

Some interpretations:

I As expected: the concept has no overhead

I The function class for the object-oriented case is as fast as the
function object

I Function pointer wrappers suffer from pointer indirection costs

I Library datatypes use a complicated machinery with pointer
indirections and virtual calls

Daniel Lincke and Sibylle Schupp PIK, TU Hamburg

The Function Concept



Introduction Functions in C++ Evaluation

Higher-order Functions: Performance

I Higher-order functions are a main reason for introducing function
datatypes

I Function application for higher-order functions should be efficient

I A simple test: repeated higher-order function application. Results:

no optimization optimization level 3 (-O3)

Fptr 17.18 5.45

OO 13.82 6.18

Boost 25.19 16.76

FC++ 34.50 10.55

Concept 12.92 1.00

Daniel Lincke and Sibylle Schupp PIK, TU Hamburg

The Function Concept



Introduction Functions in C++ Evaluation

Higher-order Functions: Performance

Some interpretations:

I As expected: concept performs best

I The object-oriented solution resolves the virtual application
operator call, which leads to an overhead

I Function pointer wrappers and library datatypes: as before

Daniel Lincke and Sibylle Schupp PIK, TU Hamburg

The Function Concept



Introduction Functions in C++ Evaluation

Other Evaluation Criteria

I We are looking further: operations on function types like
composition, currying are needed

I Questions: can these operations be implemented at all?

I And if so, can they be implemented efficiently?

I Interestingly, it turns out that not all of them are expressive enough

I A simple function pointer wrapper, for instance, cannot support
composition

Daniel Lincke and Sibylle Schupp PIK, TU Hamburg

The Function Concept



Introduction Functions in C++ Evaluation

Example: Partial Application

I We also tested the performance of function application for curried,
partially applied functions

I Results show surprisingly big differences in terms of performance:

no optimization optimization level 3 (-O3)

Fptr - -

OO 59.41 43.05

Boost 284.25 123.74

FC++ 88.63 72.86

Concept 11.60 1.00

I Once again, the function concept performs best

Daniel Lincke and Sibylle Schupp PIK, TU Hamburg

The Function Concept



Introduction Functions in C++ Evaluation

Type Declarations

I The function concept performs very good in all performance
evaluations

I So, where is the rub?

I The function concept leads to difficult type declarations, compared
with other solutions:

boost::function<B, A> f1 = ...;
boost::function<C, B> f2 = ...;
boost::function<C, A> f1_f2 = boost_compose(f1,f2);

Daniel Lincke and Sibylle Schupp PIK, TU Hamburg

The Function Concept



Introduction Functions in C++ Evaluation

Type Declarations

I With function objects and concepts:

Test_Function1 f1; // f1 : A->B
Test_Function2 f2; // f2 : B->C
Composed_Function<Test_Function1,

Test_Function2>
f1_f2 = concept_compose(f1,f2);

I Hard to understand for nested composition / currying

Daniel Lincke and Sibylle Schupp PIK, TU Hamburg

The Function Concept



Introduction Functions in C++ Evaluation

Evaluation Summary

Feature Fptr OO FC++ Boost Concept

Application operator + − − − +
Higher-order functions + − − − +
Function composition − + + + +
Function comp., efficiency − − − − +
Partial application − + + + +
Partial appl., efficiency − − − − +
Pretty function types + + + + −

Daniel Lincke and Sibylle Schupp PIK, TU Hamburg

The Function Concept


	Introduction
	Functions in C++
	Evaluation

