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Motivation and overview 
  Compiler optimizations are limited to the 

optimizations and types built in by the compiler writer 
  Cannot be extended to user-defined types 
  Cannot be extended with user-defined (high-level) 

optimizations 
  Leverage ideas from generic programming to enable 

  Applying optimizations to classes of types 
  Extending compiler with new optimizations 



Optimizations are like pharmaceuticals 
  Vendors work on “blockbusters” 

  Optimizations that apply to many programs 
  Tend to be low-level 

  Many other optimizations are left out 
  Not enough impact to justify implementing 

  See Robison, “Impact of Economics on Compiler 
Optimization” (Java Grande/ISCOPE 2001) 



“Orphan” optimizations 
  We all have application-specific optimizations that we 

want 
  None of them by itself is worthwhile to put into a 

production-grade compiler 
  Therefore, vendors will not add them 

  And users cannot add the optimizations themselves 
  But users would still benefit from them 

  Both for performance and readability 



Compilers lack high-level optimizations 
  Consider ATLAS (auto tuning) 

  Well-studied problem (matrix-matrix multiplication)  
  Needs hand-applied, library-specific optimizations 

  User-defined data types have no custom 
optimization support at all 
  But would benefit from having such support 
  Example:              (can cancel iterator         and       , etc.) 

  Functional language compilers do some because of 
guarantees on the algebraic structure of data types 
  But there is more that cannot be done that way 

−−++std::list



Optimization reuse 
  Good optimizations are hard to write 

  Many corner cases (pointers, casts, exceptions, etc.) 
  Use results of pointer analysis, path-sensitivity, etc. 

  Users are not able to write them 
  Compiler writers do not want to write too many 
  Reuse of a few optimizations for different tasks 

would mitigate these problems 



Benefits of optimization reuse 
  Better performance of user code 
  Compilers more effective and easier to write 
  Allows user-written, sophisticated optimizations by 

even unsophisticated users by building from expert-
written generic optimizations 

  Increased adoption of abstract data types due to 
simpler interfaces 
  cf. Mateev et al’s matrix library 



Identities 
  Many types and operations have similar identities: 

int x;
int y = x + 0;

→ y = x

double w;
double v = w ∗ 1.;

→ v = w

matrix m;
matrix m2 = mul(m, identity(nrows(m)));

→ m2 = m



Monoids 
  In all of these cases, operation with an identity is a 

null operation (and can be removed) 
  Mathematicians have a name for all operations with 

the identities                  and                  : a monoid 
  Binary associative operator with identity 

  Write the optimization in terms of monoid 
  One optimization can optimize all monoids 

  Including all previous cases 
  Even though they seem very different 

0 + x→ x x + 0→ x



Generic programming 
  An organizational principle for software libraries 

  Based on properties of types 
  Three major components: 

  Concepts: constraints on types 
  Models: satisfaction of those constraints 
  Generic algorithms/data structures: apply to all types that 

model certain concepts 
  Similar constructs are in several languages 



Concept-based optimization 
  Implementing compiler optimizations using the 

generic programming approach allows reuse 
  Optimizations either in compiler, library, or individual 

program 
  Reuse allows: 

  Higher-quality optimizations  
  Reduced effort 
  Optimizations by users 



Concept-based optimization 
Meta-level concepts 

Meta-level models 

Generic optimizations 

User types 

User program 

Conform to 

Passed to 

Are applied to 

Correspond to 

Come from 
Optimization 
fragments 



Meta-level concepts and models 
  Meta-level concepts are requirements for fragments 
  Meta-level models provide the fragments 

  Code run within a larger optimization 
  Optimizations are generic programs at the meta-level 
  Can be implemented via Haskell-style dictionaries 

Monoid meta-level concept 

•  Find identity elements      
  Set of program expressions 

•  Find binary operation      
  Set of program expressions and pairs of arguments 



  Analysis and transformation fragments contain parts 
of a full optimization 

  Fragments are customized for each type in program 
  Analysis fragments locate program points 

  That do a particular operation, modify a variable, etc. 
  Transformation fragments modify the program 

  Change an operation found by an analysis fragment, etc. 

Optimization fragments 

x = y;
z = w;

〈s1, x, y〉
〈s2, z, w〉



Optimizing a program 
  Optimizations applied for each combination of input 

types and operations in the program 
  Changes are applied after all optimizations 

  To avoid invalidating analysis results 

Identity removal 

Copy propagation 

int x, y;
double z;
matrix m;
x = nrows(m + matrix(0));
y = x;
z = (double)y ∗ 1.;

// ...
x = nrows(m);
y = x;
z = (double)x;

int, +
double, ∗
matrix, +

int



Proofs of concept 
  Feasibility demonstrated with prototypes 

  Regular-expression-based optimization specification 
language 

  Traditional flow equations 
  Both are embedded into Scheme and apply to simple 

C++ programs (using the ROSE framework) 



Identity operation removal 
                   and                 (for generalizations of    

and   ) 
  Applies to any monoid 
  Two meta-level concepts required: Monoid and 

Assignable 

  Transforms                                   to 

0 x 

+ 

x 

From Monoid 

From Monoid From Assignable 

int w = x + 3 ∗ y;int w = 0 + (x + 3 ∗ y);

0
+

0 + x→ x x + 0→ x



  Only Assignable is required  

Generic copy propagation 

x y 

= 

x or y 

= 

… ×
… x … 

x y 

= 

x or y 

= 

… ×
… y … 

int x, y, z;
x = y;
z = x;
x = 3;
f(z);

f(y);



Conclusions 
  Generic optimizations allow optimizations to be 

applied to entire classes of types 
  Optimizations can be encoded in library to extend 

compiler 
  Optimizations can be reused 
  Feasibility demonstrated with implementation 



Future work 
  Analysis and transformation fragments that work on 

many types at once 
  Ordering and profitability of generic optimizations 
  Using axioms or a different high-level specification 

language 
  Generic transformations in MetaOCaml 
  User-defined type optimization in Haskell or other 

languages 


