
Reusable, Generic Compiler
Analyses and Transformations

Jeremiah Willcock, Andrew Lumsdaine, and Daniel Quinlan
Indiana University and Lawrence Livermore National Laboratory

This work performed under the auspices of the U.S. Department of
Energy by Lawrence Livermore National Laboratory under Contract
DE-AC52-07NA27344. This work was funded by the Laboratory
Directed Research and Development Program at LLNL under project
tracking code 07-ERD-057.

Motivation and overview
  Compiler optimizations are limited to the

optimizations and types built in by the compiler writer
  Cannot be extended to user-defined types
  Cannot be extended with user-defined (high-level)

optimizations
  Leverage ideas from generic programming to enable

  Applying optimizations to classes of types
  Extending compiler with new optimizations

Optimizations are like pharmaceuticals
  Vendors work on “blockbusters”

  Optimizations that apply to many programs
  Tend to be low-level

  Many other optimizations are left out
  Not enough impact to justify implementing

  See Robison, “Impact of Economics on Compiler
Optimization” (Java Grande/ISCOPE 2001)

“Orphan” optimizations
  We all have application-specific optimizations that we

want
  None of them by itself is worthwhile to put into a

production-grade compiler
  Therefore, vendors will not add them

  And users cannot add the optimizations themselves
  But users would still benefit from them

  Both for performance and readability

Compilers lack high-level optimizations
  Consider ATLAS (auto tuning)

  Well-studied problem (matrix-matrix multiplication)
  Needs hand-applied, library-specific optimizations

  User-defined data types have no custom
optimization support at all
  But would benefit from having such support
  Example: (can cancel iterator and , etc.)

  Functional language compilers do some because of
guarantees on the algebraic structure of data types
  But there is more that cannot be done that way

−−++std::list

Optimization reuse
  Good optimizations are hard to write

  Many corner cases (pointers, casts, exceptions, etc.)
  Use results of pointer analysis, path-sensitivity, etc.

  Users are not able to write them
  Compiler writers do not want to write too many
  Reuse of a few optimizations for different tasks

would mitigate these problems

Benefits of optimization reuse
  Better performance of user code
  Compilers more effective and easier to write
  Allows user-written, sophisticated optimizations by

even unsophisticated users by building from expert-
written generic optimizations

  Increased adoption of abstract data types due to
simpler interfaces
  cf. Mateev et al’s matrix library

Identities
  Many types and operations have similar identities:

int x;
int y = x + 0;

→ y = x

double w;
double v = w ∗ 1.;

→ v = w

matrix m;
matrix m2 = mul(m, identity(nrows(m)));

→ m2 = m

Monoids
  In all of these cases, operation with an identity is a

null operation (and can be removed)
  Mathematicians have a name for all operations with

the identities and : a monoid
  Binary associative operator with identity

  Write the optimization in terms of monoid
  One optimization can optimize all monoids

  Including all previous cases
  Even though they seem very different

0 + x→ x x + 0→ x

Generic programming
  An organizational principle for software libraries

  Based on properties of types
  Three major components:

  Concepts: constraints on types
  Models: satisfaction of those constraints
  Generic algorithms/data structures: apply to all types that

model certain concepts
  Similar constructs are in several languages

Concept-based optimization
  Implementing compiler optimizations using the

generic programming approach allows reuse
  Optimizations either in compiler, library, or individual

program
  Reuse allows:

  Higher-quality optimizations
  Reduced effort
  Optimizations by users

Concept-based optimization
Meta-level concepts

Meta-level models

Generic optimizations

User types

User program

Conform to

Passed to

Are applied to

Correspond to

Come from
Optimization
fragments

Meta-level concepts and models
  Meta-level concepts are requirements for fragments
  Meta-level models provide the fragments

  Code run within a larger optimization
  Optimizations are generic programs at the meta-level
  Can be implemented via Haskell-style dictionaries

Monoid meta-level concept

•  Find identity elements
 Set of program expressions

•  Find binary operation
 Set of program expressions and pairs of arguments

  Analysis and transformation fragments contain parts
of a full optimization

  Fragments are customized for each type in program
  Analysis fragments locate program points

  That do a particular operation, modify a variable, etc.
  Transformation fragments modify the program

  Change an operation found by an analysis fragment, etc.

Optimization fragments

x = y;
z = w;

〈s1, x, y〉
〈s2, z, w〉

Optimizing a program
  Optimizations applied for each combination of input

types and operations in the program
  Changes are applied after all optimizations

  To avoid invalidating analysis results

Identity removal

Copy propagation

int x, y;
double z;
matrix m;
x = nrows(m + matrix(0));
y = x;
z = (double)y ∗ 1.;

// ...
x = nrows(m);
y = x;
z = (double)x;

int, +
double, ∗
matrix, +

int

Proofs of concept
  Feasibility demonstrated with prototypes

  Regular-expression-based optimization specification
language

  Traditional flow equations
  Both are embedded into Scheme and apply to simple

C++ programs (using the ROSE framework)

Identity operation removal
  and (for generalizations of

and)
  Applies to any monoid
  Two meta-level concepts required: Monoid and

Assignable

  Transforms to

0 x

+

x

From Monoid

From Monoid From Assignable

int w = x + 3 ∗ y;int w = 0 + (x + 3 ∗ y);

0
+

0 + x→ x x + 0→ x

  Only Assignable is required

Generic copy propagation

x y

=

x or y

=

… ×
… x …

x y

=

x or y

=

… ×
… y …

int x, y, z;
x = y;
z = x;
x = 3;
f(z);

f(y);

Conclusions
  Generic optimizations allow optimizations to be

applied to entire classes of types
  Optimizations can be encoded in library to extend

compiler
  Optimizations can be reused
  Feasibility demonstrated with implementation

Future work
  Analysis and transformation fragments that work on

many types at once
  Ordering and profitability of generic optimizations
  Using axioms or a different high-level specification

language
  Generic transformations in MetaOCaml
  User-defined type optimization in Haskell or other

languages

