
Entities, Species, Genera, Value 
Types, Computational Bases, and 

Concepts 

What is the Best Way to Glue Code Together? 



What is this talk about? 

  Part I 
  Introduce a taxonomy of ideas in programming 

  From “Elements of Programming” by Stepanov and McJones 

  Part II 
  Consider concepts 

  Are concepts the abstraction we want and need? 
  What concerns do concepts combine? 

  Punch line: Concepts may be a wrong solution 
  I only hint what we could try to do 
  No, I don’t have a language and an implementation 

2 



Genera 

Abstract Concrete 

Similar abstract 
species 

Numbers, … 

Similar concrete 
species 

Mammals, bipeds, … 

Category of Ideas: Entity, Species, Genus 

3 

Species 

Abstract Concrete 

Common properties 

Colors, natural 
numbers, … 

Common attributes 

Men, states, … 

Entities 

Abstract Concrete 

“Eternal and 
unchangeable” 

Blue, 13, … 

In time and space, have 
attributes and identity 

A man, a state, … 



Category of Ideas: Entity, Species, Genus 

4 

  These categories are what we think 
  We use these in discussions 
  We write these on whiteboards 

  A good library attempts: 
  to provide abstractions that mimic these categories 
  provide “implementations” of these abstractions 

  But, what language mechanisms do we have to help 
us with the task? 

  The rest of the talk 



Values 

5 

Datum 

010001011101001… 

Datum 

1110011110111110… 

Datum 

00100000001000… 

… 

Datum 

001001111101000… 

Species (A/C) 

Entity 1 

Entity 2 

Entity 3 

Entity 4 

… 

Value Type 

Value 2 
interpretation 

representation 

Value 3 
interpretation 

representation 

Value 4 
interpretation 

representation 

Value 1 
interpretation 

representation 

… 



Object Type 

… 

Objects 

6 

Memory 

10101010 

00000000 

01010101 

00001111 

11110000 

11111111 

11001100 

00110011 

Object 1 
State 

Resources 

Object 2 
State 

Resources 

Object 2 
State 

Resources 

Value Type 

… 

Value 1 

Value 2 

C++ 



Computational Bases 
  Procedures modify, construct, or destroy objects 
  Each object type has one or more computational bases 

7 

Integers 

Computational base 1 

zero succ == 

Computational base 2 

zero + == neg 

Computational base 2 

zero + == - * / 

… 



Concepts: Abstraction Level and 
Concerns 
  We have seen all that rich development of ideas 
  Concepts do away with all of it and: 

8 

A concept is a description of requirements on one or 
more (object) types stated in terms of the existence and 
properties of procedures, type attributes, and type 
functions defined on types. 

  Concept concerns 
  Procedure-level requirements 
  Performance 
  Species 



Problems with Concepts 
  Concepts end up being too specific 

  Trying to match particular procedures 
  Building hierarchies of performance requirements 

  Concepts do not correspond to entities, value types, 
or to computational bases 

  Concepts result in rigid hierarchies and high coupling 
  Concepts work well for C++, but what about next 

generation of “programming systems” 
  More of programming should be automated 
  A “programming system” could help us assemble code 
  Rigid interfaces would stand in the way 

9 



Topics for Discussion 
  Separate concerns 

  Species 

  Computational bases (why only for object types?), “concept maps” 

  Implicit requirements, performance requirements, property requirements 

  Interface enforcement 
  Chunks of computational bases 
  Computed by an IDE, versioned, overloaded on … 

10 

1 species Number;
2 species NaturalNumber refines Number;

1 comp_base<species NaturalNumber> {
2 NaturalNumber zero();
3 NaturalNumber succ(NaturalNumber);
4 }

1 NaturalNumber operator+(NaturalNumber, NaturalNumber);
2 NaturalNumber operator-(NaturalNumber, NaturalNumber);
3 ...

or 

1 template<species NaturalNumber>
2 void f(NaturalNumber nat) {
3 add(nat, nat); [[Constant]]
4 }

1 Matrix mult(Matrix m, Matrix n)
2 require Diagonal(m), Sparse(m) {
3 m.mult(n); // default implementation
4 }



Credits 
  Andreas Priesnitz 

  “Multistage Algorithms in C++” 

11 



12 


